1. 之前课程里,一个32*32*3的图像被展成3072*1的向量,左乘大小为10*3072的权重矩阵W,可以得到一个10*1的得分,分别对应10类标签。

在Convolution Layer里,图像保持原样,依旧是32*32*3,把它和一个5*5*3的filter进行卷积运算(filter和原图像有相同的通道数,比如这里都是3)。这里的“卷积”并不是严格按照信号处理里先把图像翻转,这里只是对应像素乘积累加,可以按照fully connected layer的写法,把5*5*3的filter展开成75*1,原图像也抠出同样大小的一块并展开成一维,然后线性运算wTx+b。如此运算后,最终得到28*28*1的结果(32-5+1=28),名字叫activation map。每一个filter实际代表一种特征,通过卷积查看原图的各个局部位置与这个特征的匹配程度。实际处理中会用好多个不同的filter,如果用了6个,则得到28*28*6的“新图像”。卷积是线性运算,所以之后还要再跟一个非线性的激活函数(比如ReLU)。几个卷积层之后,还会再用一个POOL(池化层:池化层的输入一般来源于上一个卷积层,主要作用是增强鲁棒性,并且减少了参数的数量,防止过拟合现象的发生)。

卷积神经网络实际就是一系列的类似卷积层的堆叠。从底层到高层的卷积层对应的特征越来越复杂。

2. 上一部分的卷积过程是每次平移一个像素(stride=1),可以移动几个像素,最终输出大小是(N-F)/stride+1,这里假设图像是N*N,filter是F*F。输出大小必须是整数,如果不是的话,stride就不能取这个数。

还有两个问题:1)每次卷积会缩小图片,对于卷积层很多的深度学习网络,图片会很快缩的非常小。2)丢失了边缘信息。为了解决这个问题,实际操作中,会在图像周边补0,这时候输出大小是(N+2*P-F)/stride+1,这里P是两边各补的0的个数。

总结一下:

输入图片大小是W1*H1*D1

Hyperparameters:1)filter的数量K,一般取2的指数个,比如32,64,128,512。

2)filter的大小F,一般取1,3,5。(边长为1的filter是有意义的,因为这相当于是对每个像素的各个通道加权求和。)

3)步长stride S,一般取1,2。stride有降低图片分辨率的作用,或者说降采样。

4)单边补零的个数P。

输出图片大小是W2*H2*D2:

1)W2=(W1-F+2P)/S+1.

2)H2=(H1-F+2P)/S+1.

3)D2=K。

一共F*F*D1*K个权重参数,K个bias参数。

3. Pooling Layer:对图片降采样。

最常用的是Max pooling:降采样时取一个小区域里的最大值。可以这么直观理解,比如我们想在一个小区域里找某个特征,这个小区域内任何一处的值很高,都代表我们在这个小区域找到了这个特征,所以用它来表征这个区域。

卷积过程的步长stride大于1和pooling都是为了降采样,二者并不是必须有的,根据实际问题调整架构。

总结一下:

输入图片大小是W1*H1*D1

Hyperparameters:1)pooling的大小F,一般取2,3。

2)步长stride S,一般取2。

输出图片大小是W2*H2*D2:

1)W2=(W1-F)/S+1.

2)H2=(H1-F)/S+1.

3)D2=D1

不引入新的参数,并且一般不会补0。

cs231n spring 2017 lecture5 Convolutional Neural Networks的更多相关文章

  1. cs231n spring 2017 lecture5 Convolutional Neural Networks听课笔记

    1. 之前课程里,一个32*32*3的图像被展成3072*1的向量,左乘大小为10*3072的权重矩阵W,可以得到一个10*1的得分,分别对应10类标签. 在Convolution Layer里,图像 ...

  2. cs231n spring 2017 lecture10 Recurrent Neural Networks 听课笔记

    (没太听明白,下次重新听一遍) 1. Recurrent Neural Networks

  3. cs231n spring 2017 lecture10 Recurrent Neural Networks

    (没太听明白,下次重新听一遍) 1. Recurrent Neural Networks

  4. cs231n spring 2017 lecture7 Training Neural Networks II 听课笔记

    1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...

  5. cs231n spring 2017 lecture7 Training Neural Networks II

    1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...

  6. cs231n spring 2017 lecture6 Training Neural Networks I 听课笔记

    1. 激活函数: 1)Sigmoid,σ(x)=1/(1+e-x).把输出压缩在(0,1)之间.几个问题:(a)x比较大或者比较小(比如10,-10),sigmoid的曲线很平缓,导数为0,在用链式法 ...

  7. cs231n spring 2017 lecture6 Training Neural Networks I

    1. 激活函数: 1)Sigmoid,σ(x)=1/(1+e-x).把输出压缩在(0,1)之间.几个问题:(a)x比较大或者比较小(比如10,-10),sigmoid的曲线很平缓,导数为0,在用链式法 ...

  8. cs231n spring 2017 lecture8 Deep Learning Networks 听课笔记

    1. CPU vs. GPU: CPU核心少(几个),更擅长串行任务.GPU有很多核心(几千个),每一个核都弱,有自己的内存(几个G),很适合并行任务.GPU最典型的应用是矩阵运算. GPU编程:1) ...

  9. CS231n笔记 Lecture 5 Convolutional Neural Networks

    一些ConvNets的应用 Face recognition 输入人脸,推测是谁 Video classfication Recognition 识别身体的部位, 医学图像, 星空, 标志牌, 鲸.. ...

随机推荐

  1. Linux中Tomcat 自动设置CATALINA_HOME方法

    Linux中Tomcat 自动设置CATALINA_HOME方法 在服务器部署中,我们经常会出现“在一个服务器上运行多个tomcat服务”的情况. 使用如下方法设置,可以无限复制平移扩展Tomcat, ...

  2. 微信H5支付,成功样例

    <?php/** * Created by PhpStorm. * User: Administrator * Date: 2019/6/3 * Time: 12:00 */ if( !defi ...

  3. 扫描转换算法——DDA、中点画线画圆、椭圆

    我的理解:在光栅图形学中,由于每一个点的表示都只能是整数值,所以光栅图形学实际只是对对实际图形的近似表示. 数值微分法(DDA):以下PPT截图来自北京化工大学李辉老师 代码实现: import ma ...

  4. 01 语言基础+高级:1-9 网络编程_day11【网络编程】

    day11[网络编程] 主要内容 软件架构CS/BS 网络通信三要素 TCP通信 Socket套接字 ServerSocket 教学目标 能够辨别UDP和TCP协议特点 能够说出TCP协议下两个常用类 ...

  5. Akka Typed系列:协议&行为

    引言 2019年11月6号LightBend公司发布了AKKA 2.6版本,带来了类型安全的actor,新的Akka Cluster底层通信设施——Artery,带来了更好的稳定性,使用Jackson ...

  6. 一个理解基本RCNN的简单例子

    对于一个最简单的RNN网络https://github.com/Teaonly/beginlearning/ """Minimal character-level Van ...

  7. 01.Homebrew

    1.homebrew 的安装 ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/ ...

  8. 计量经济与时间序列_自协方差(AutoCovariance)算法解析(Python)

    1 样本的自协方差函数的通式如下: 2 其实,后面要计算的自相关函数也可以用自协方差来表示: # @author: "Thomas.Shih" # @date: 2018/3/5 ...

  9. Gson使用指南(一)

    注:此系列基于Gson 2.4. 一.Gson的基本用法 Gson提供了fromJson() 和toJson() 两个直接用于解析和生成的方法,前者实现反序列化,后者实现了序列化.同时每个方法都提供了 ...

  10. redhat6.5 升级内核

    1.导入key rpm --import https://www.elrepo.org/RPM-GPG-KEY-elrepo.org 2.安装elrepo的yum源 rpm -Uvh https:// ...