CF55D
题目大意:
定义:beautiful number,一种能整除它的所有非 0 数位的数字。
给你 l 和 r,请求出 [l,r] 中 beautiful number 的个数。
解题思路:
数位 DP 。
首先要指出的一点是:lcm(1,2,3, ... ,9) = 2520。则对于任何一个数 num,num = 2520k + num',我们有 num % 2520 % t = num' % t = num % t (t = 1,2,3, ... , 9),其实也不难理解:因为 2520k 必定被 t 整除,所以 num % t 其实就等于 num' % t 。下面是一个就 t % (x*n) % x = t % x 的严格证明:
设 t = k*x + t' 。则有 t%x = t' 。令 k = a*n+b,则 t % (x*n) % x = (k*x+t') % (x*n) % x = (a*n*x + b*x + t') % (n*x) % x = (b*x + t') % x = t' 。原等式得证。
如此一来,我们便可将所有的数字对着 2520 取一下模,压缩状态。
我们可以定义 dp[pos][now][prelcm]:其中 pos 表示当前遍历到的位置,now 表示当前数字的大小,prelcm 表示前面的几个数字的最小公倍数,如此我们需要定义 dp[20][2520][2521],虽然已经十分优秀,但似乎还有点大?其实我们还可以用离散化来优化一下:虽说 lcm(1,2,3, ... ,9) = 2520,但我们绝对不可能取尽这两千多个数,你说对吧?
至于其他的,其实就都是套路了,数位 DP 其实也是有套路滴~
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring> using namespace std;
typedef long long ll;
const int MOD = ;
ll index[MOD+];
ll dp[][MOD][];
int num[];
void init(){
int cnt=;
for(int i=;i<=MOD;i++){
if(MOD%i==) index[i]=cnt++;
}
}
ll gcd(ll a,ll b){
if(b==) return a;
return gcd(b,a%b);
}
ll lcm(ll a,ll b){
return a/gcd(a,b)*b;
}
ll dfs(int pos,int prelcm,int now,bool limit){
if(pos==-){
if(now%prelcm==) return ;
return ;
}
if(!limit&&dp[pos][now][index[prelcm]]!=-) return dp[pos][now][index[prelcm]];
int up=limit?num[pos]:;
ll ret=;
for(int i=;i<=up;i++){
int next=(now*+i)%MOD;
int tlcm=prelcm;
if(i) tlcm=lcm(tlcm,i);
ret+=dfs(pos-,tlcm,next,limit&&i==up);
}
if(!limit) dp[pos][now][index[prelcm]]=ret;
return ret;
}
ll solve(ll x){
if(x==) return ;
int ind=;
memset(num,,sizeof(num));
while(x){
num[ind++]=x%;
x/=;
}
return dfs(ind-,,,true);
}
int main()
{
init();
memset(dp,-,sizeof(dp));
ll l,r;
int t;
scanf("%d",&t); while(t--){
scanf("%I64d%I64d",&l,&r);
printf("%I64d\n",solve(r)-solve(l-));
}
return ;
}
CF55D的更多相关文章
- 洛谷 CF55D Beautiful numbers 解题报告
CF55D Beautiful numbers 题意 \(t(\le 10)\)次询问区间\([l,r](1\le l\le r\le 9\times 10^{18})\)中能被每一位上数整除的数的个 ...
- 【CF55D】Beautiful numbers(动态规划)
[CF55D]Beautiful numbers(动态规划) 题面 洛谷 CF 题解 数位\(dp\) 如果当前数能够被它所有数位整除,意味着它能够被所有数位的\(lcm\)整除. 所以\(dp\)的 ...
- 【CF55D】Beautiful numbers
[CF55D]Beautiful numbers 题面 洛谷 题解 考虑到如果一个数整除所有数那么可以整除他们的\(lcm\),而如果数\(x\)满足\(x\bmod Lcm(1,2...,9)=r\ ...
- CF55D Beautiful numbers
题目链接 题意 定义一个数字\(x\)是\(beautiful\ number\)当且仅当\(x\)可以被其十进制表示下所有非\(0\)位置的数整除. 例如\(24\)是一个\(beautiful\ ...
- cf55D 数位dp记忆化搜索+状态离散
/* 漂亮数定义:可以整除任意数位上的数 求出区间[l,r]之间的漂亮数个数 因为 dp[i][j][k]:i位前模lcm的值是j,i位前lcm是k的漂亮数个数 */ #include<bits ...
- cf55D. Beautiful numbers(数位dp)
题意 题目链接 Sol 看到这种题就不难想到是数位dp了. 一个很显然的性质是一个数若能整除所有位数上的数,则一定能整除他们的lcm. 根据这个条件我们不难看出我们只需要记录每个数对所有数的lcm(也 ...
- CF55D: Beautiful Number
传送门 一句话题意 求 l~r 之间有多少个数能整除自己各位上的数(排除 0 ) 分析 然后我们一看就知道数位 dp ,但是状态很难设计啊 QWQ 我们可以发现所有数位的 lcm 最大为 2520 ( ...
- [暑假集训--数位dp]cf55D Beautiful numbers
Volodya is an odd boy and his taste is strange as well. It seems to him that a positive integer numb ...
- $CF55D [数位DP]$
题面 数位DP+状压. 首先,按照数位DP的基本套路,每个个位数的最小公倍数为2520,所以只用考虑模2520的情况.考虑一个DP.dp[i][j][k]表示当前是第i位,2~9的数的集合为j,模25 ...
- CF55D Beautiful numbers (数位dp)
题目链接 题解 一个数能被一些数整除,那么一定被这些数的\(lcm\)整除 那么我们容易想到根据\(lcm\)设状态 我们可以发现有用的\(lcm\)只有\(48\)个 那么按照一般的数位\(dp\) ...
随机推荐
- Django中修改DATABASES后,执行python manage.py ****报错!UnicodeEncodeError
Django中修改DATABASES后,执行python manage.py ****报错!UnicodeEncodeError: 'latin-1' codec can't encode chara ...
- java switch用法
为什么80%的码农都做不了架构师?>>> Java 7中,switch的参数可以是String类型了,这对我们来说是一个很方便的改进.到目前为止switch支持这样几种数据类型: ...
- 初入React源码(一)
导语 React是我接触的第二个框架,我最初开始接触的是vue,但是并没有深入的理解过vue,然后在工作过程中,我开始使用了React,现在已经觉得React会比vue更加实用,但是这只是个人观点,可 ...
- 负载均衡服务之HAProxy https配置、四层负载均衡以及访问控制
前文我们聊了下haproxy的访问控制ACL的配置,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/12817773.html:今天我们来聊一聊haproxy的h ...
- USACO Training Section 1.3混合牛奶 Mixing Milk
题目描述 由于乳制品产业利润很低,所以降低原材料(牛奶)价格就变得十分重要.帮助Marry乳业找到最优的牛奶采购方案. Marry乳业从一些奶农手中采购牛奶,并且每一位奶农为乳制品加工企业提供的价格是 ...
- CodeForces - 1047CEnlarge GCD(这题很难,快来看题解,超级详细,骗浏览量)
C. Enlarge GCD time limit per test1 second memory limit per test256 megabytes inputstandard input ou ...
- DP 60题 -2 HDU1025 Constructing Roads In JGShining's Kingdom
Problem Description JGShining's kingdom consists of 2n(n is no more than 500,000) small cities which ...
- RF(读写 excel)
1.安装 ExcelLibrary 库:pip install robotframework-ExcelLibrary 但是 Python3.0 通过上面的命令安装 ExcelLibrary 时,会发 ...
- git新手使用教程包含各种系统
Git Tutorial 1.下载客户端 从Git官网下载客户端: https://git-scm.com/ Windows版下载地址: https://git-scm.com/downl ...
- 两个命令把 Vim 打造成 Python IDE
运行下面两个命令,即可把 Vim(含插件)配置成 Python IDE.目前支持 MAC 和 Ubuntu. Shell curl -O https://raw.githubusercontent ...