Description

Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his sale area there are N shopkeepers (marked from 1 to N) which stocks goods from him.Dearboy has M supply places (marked from 1 to M), each provides K different kinds of goods (marked from 1 to K). Once shopkeepers order goods, Dearboy should arrange which supply place provide how much amount of goods to shopkeepers to cut down the total cost of transport.

It's known that the cost to transport one unit goods for different kinds from different supply places to different shopkeepers may be different. Given each supply places' storage of K kinds of goods, N shopkeepers' order of K kinds of goods and the cost to transport goods for different kinds from different supply places to different shopkeepers, you should tell how to arrange the goods supply to minimize the total cost of transport.

Input

The input consists of multiple test cases. The first line of each test case contains three integers N, M, K (0 < N, M, K < 50), which are described above. The next N lines give the shopkeepers' orders, with each line containing K integers (there integers are belong to [0, 3]), which represents the amount of goods each shopkeeper needs. The next M lines give the supply places' storage, with each line containing K integers (there integers are also belong to [0, 3]), which represents the amount of goods stored in that supply place.

Then come K integer matrices (each with the size N * M), the integer (this integer is belong to (0, 100)) at the i-th row, j-th column in the k-th matrix represents the cost to transport one unit of k-th goods from the j-th supply place to the i-th shopkeeper.

The input is terminated with three "0"s. This test case should not be processed.

Output

For each test case, if Dearboy can satisfy all the needs of all the shopkeepers, print in one line an integer, which is the minimum cost; otherwise just output "-1".

Sample Input

1 3 3
1 1 1
0 1 1
1 2 2
1 0 1
1 2 3
1 1 1
2 1 1 1 1 1
3
2
20 0 0 0
Sample Output
4
-1

这个直接把每件物品单出来考虑完事,单独建图跑就行,然后就很简单了。就变成了普通的费用流问题,那么建图套模板即可!

#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#include<vector>
#define INF 1e9
using namespace std;
const int maxn=200+10; struct Edge
{
int from,to,cap,flow,cost;
Edge(){}
Edge(int f,int t,int c,int fl,int co):from(f),to(t),cap(c),flow(fl),cost(co){}
}; struct MCMF
{
int n,m,s,t;
vector<Edge> edges;
vector<int> G[maxn];
bool inq[maxn];
int d[maxn];
int p[maxn];
int a[maxn]; void init(int n,int s,int t)
{
this->n=n, this->s=s, this->t=t;
edges.clear();
for(int i=0;i<n;++i) G[i].clear();
} void AddEdge(int from,int to,int cap,int cost)
{
edges.push_back(Edge(from,to,cap,0,cost));
edges.push_back(Edge(to,from,0,0,-cost));
m=edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
} bool BellmanFord(int &flow, int &cost)
{
for(int i=0;i<n;++i) d[i]=INF;
memset(inq,0,sizeof(inq));
d[s]=0, a[s]=INF, inq[s]=true, p[s]=0;
queue<int> Q;
Q.push(s);
while(!Q.empty())
{
int u=Q.front(); Q.pop();
inq[u]=false;
for(int i=0;i<G[u].size();++i)
{
Edge &e=edges[G[u][i]];
if(e.cap>e.flow && d[e.to]>d[u]+e.cost)
{
d[e.to]= d[u]+e.cost;
p[e.to]=G[u][i];
a[e.to]= min(a[u],e.cap-e.flow);
if(!inq[e.to]){ Q.push(e.to); inq[e.to]=true; }
}
}
}
if(d[t]==INF) return false;
flow +=a[t];
cost +=a[t]*d[t];
int u=t;
while(u!=s)
{
edges[p[u]].flow += a[t];
edges[p[u]^1].flow -=a[t];
u = edges[p[u]].from;
}
return true;
}
int Min_cost()
{
int flow=0,cost=0;
while(BellmanFord(flow,cost));
return cost;
}
}MM; int n,m,k;
int need[50+5][50+5]; //need[i][j]表i顾客对j商品的需求量
int have[50+5][50+5]; //have[i][j]表i仓库对j商品的提供量
int cost[50+5][50+5][50+5]; //cost[x][i][j] 表j仓库到i顾客对x商品的单位运费 int main()
{
while(scanf("%d%d%d",&n,&m,&k)==3 && n)
{
int goods[maxn];//货物需求量,用来判断货物是否足够
int enough=true;//初始货物充足
memset(goods,0,sizeof(goods)); for(int i=1;i<=n;++i)
for(int j=1;j<=k;++j)
{
scanf("%d",&need[i][j]);
goods[j]+= need[i][j];
} for(int i=1;i<=m;++i)
for(int j=1;j<=k;++j)
{
scanf("%d",&have[i][j]);
goods[j] -=have[i][j];
} for(int h=1;h<=k;++h)
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
scanf("%d",&cost[h][i][j]); for(int i=1;i<=k;++i)if(goods[i]>0)//货物不足,不用计算了
{
enough=false;
break;
}
if(!enough)//初始货物不足
{
printf("-1\n");
continue;
} int min_cost=0;
for(int g=1;g<=k;++g)
{
int src=0, dst=n+m+1;
MM.init(n+m+2,src,dst);
for(int i=1;i<=m;++i) MM.AddEdge(src,i,have[i][g],0);
for(int i=1;i<=n;++i) MM.AddEdge(m+i,dst,need[i][g],0);
for(int i=1;i<=m;++i)
for(int j=1;j<=n;++j)
{
MM.AddEdge(i,j+m,INF,cost[g][j][i]);
}
min_cost += MM.Min_cost();
}
printf("%d\n",min_cost);
}
return 0;
}

图论--网络流--费用流--POJ 2156 Minimum Cost的更多相关文章

  1. 图论--网络流--费用流POJ 2195 Going Home

    Description On a grid map there are n little men and n houses. In each unit time, every little man c ...

  2. 图论--网络流--最大流--POJ 3281 Dining (超级源汇+限流建图+拆点建图)

    Description Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, an ...

  3. 图论--网络流--最大流--POJ 1698 Alice's Chance

    Description Alice, a charming girl, have been dreaming of being a movie star for long. Her chances w ...

  4. 图论--网络流--最大流 POJ 2289 Jamie's Contact Groups (二分+限流建图)

    Description Jamie is a very popular girl and has quite a lot of friends, so she always keeps a very ...

  5. POJ 2516 Minimum Cost (最小费用最大流)

    POJ 2516 Minimum Cost 链接:http://poj.org/problem?id=2516 题意:有M个仓库.N个商人.K种物品.先输入N,M.K.然后输入N行K个数,每一行代表一 ...

  6. POJ 2516 Minimum Cost (网络流,最小费用流)

    POJ 2516 Minimum Cost (网络流,最小费用流) Description Dearboy, a goods victualer, now comes to a big problem ...

  7. Poj 2516 Minimum Cost (最小花费最大流)

    题目链接: Poj  2516  Minimum Cost 题目描述: 有n个商店,m个仓储,每个商店和仓库都有k种货物.嘛!现在n个商店要开始向m个仓库发出订单了,订单信息为当前商店对每种货物的需求 ...

  8. 图论-zkw费用流

    图论-zkw费用流 模板 这是一个求最小费用最大流的算法,因为发明者是神仙zkw,所以叫zkw费用流(就是zkw线段树那个zkw).有些时候比EK快,有些时候慢一些,没有比普通费用流算法更难,所以学z ...

  9. POJ 2516 Minimum Cost (费用流)

    题面 Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his sale area ...

随机推荐

  1. Java第三十三天,IO操作(续集),字符转换流

    计算机都是以二进制码格式存储文件的,但是在读写文件的过程中,每个应用程序都有自己的编码格式.FileWrite和FileRead类是通过查询系统默认码表进行读写的,因此在自己的系统上能够实现编码的智能 ...

  2. 7.1 java 类、(成员)变量、(成员)方法

    /* * 面向对象思想: * 面向对象是基于面向过程的编程思想. * * 面向过程:强调的是每一个功能的步骤 * 面向对象:强调的是对象,然后由对象去调用功能 * * 面向对象的思想特点: * A:是 ...

  3. 记一次Windows蓝屏分析

    大半夜收到此类信息,应该是让所有系统管理员最头大的事情了 首先我快速通过iDRAC,发现服务器发生了重启操作,并得到相关日志信息 通过Dell的官方解释,确定了该问题是OS层面的异常导致.打开Wind ...

  4. Altium Designer 3D

  5. 15.ASP.NET Core 应用程序中的静态文件中间件

    在这篇文章中,我将向大家介绍,如何使用中间件组件来处理静态文件.这篇文章中,我们讨论下面几个问题: 在ASP.NET Core中,我们需要把静态文件存放在哪里? 在ASP.NET Core中 wwwr ...

  6. 【three.js第五课】光线的添加和感光材料

    材料分类: MeshBasicMaterial:基础网孔材料,一个以简单着色(平面或线框)方式来绘制几何形状的材料.MeshLambertMaterial:兰伯特网孔材料,一种非发光材料(兰伯特)的表 ...

  7. Python 控制流代码混淆简介,加大别人分析你代码逻辑和流程难度

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者: 王平 PS:如有需要Python学习资料的小伙伴可以加点击下方链接自 ...

  8. re模块语法—python正则表达式

    用字符串匹配实现 对于简单的匹配查找,可以通过字符串匹配实现,比如:查找以”hello”开头的字符串 此时就可以正确查找出以start开始的字符串了 python中的正则表达式模块 在python中为 ...

  9. Eugene and an array CodeForces - 1333C (思维)

    题目大意:求好数组的个数,所谓好数组 1好数组是原数组的一段连续的子数组,2 好数组不包含元素和为0的子数组. 题解:唉,这个题目把我给些懵了....我一开始的想法求后缀和,保存位置,然后枚举前缀和, ...

  10. [YII2] 增删改查2

    一.新增 使用model::save()操作进行新增数据 $user= new User; $user->username =$username; $user->password =$pa ...