// tarjan算法求无向图的桥、边双连通分量并缩点
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int SIZE = 100010;
int head[SIZE], ver[SIZE * 2], Next[SIZE * 2];
int dfn[SIZE], low[SIZE], c[SIZE];
int n, m, tot, num, dcc, tc;
bool bridge[SIZE * 2];
int hc[SIZE], vc[SIZE * 2], nc[SIZE * 2]; void add(int x, int y) {
ver[++tot] = y, Next[tot] = head[x], head[x] = tot;
} void add_c(int x, int y) {
vc[++tc] = y, nc[tc] = hc[x], hc[x] = tc;
} void tarjan(int x, int in_edge) {
dfn[x] = low[x] = ++num;
for (int i = head[x]; i; i = Next[i]) {
int y = ver[i];
if (!dfn[y]) {
tarjan(y, i);
low[x] = min(low[x], low[y]);
if (low[y] > dfn[x])
bridge[i] = bridge[i ^ 1] = true;
}
else if (i != (in_edge ^ 1))
low[x] = min(low[x], dfn[y]);
}
} void dfs(int x) {
c[x] = dcc;
for (int i = head[x]; i; i = Next[i]) {
int y = ver[i];
if (c[y] || bridge[i]) continue;
dfs(y);
}
} int main() {
cin >> n >> m;
tot = 1;
for (int i = 1; i <= m; i++) {
int x, y;
scanf("%d%d", &x, &y);
add(x, y), add(y, x);
}
for (int i = 1; i <= n; i++)
if (!dfn[i]) tarjan(i, 0);
for (int i = 2; i < tot; i += 2)
if (bridge[i])
printf("%d %d\n", ver[i ^ 1], ver[i]); for (int i = 1; i <= n; i++)
if (!c[i]) {
++dcc;
dfs(i);
}
printf("There are %d e-DCCs.\n", dcc);
for (int i = 1; i <= n; i++)
printf("%d belongs to DCC %d.\n", i, c[i]); tc = 1;
for (int i = 2; i <= tot; i++) {
int x = ver[i ^ 1], y = ver[i];
if (c[x] == c[y]) continue;
add_c(c[x], c[y]);
}
printf("缩点之后的森林,点数 %d,边数 %d\n", dcc, tc / 2);
for (int i = 2; i < tc; i += 2)
printf("%d %d\n", vc[i ^ 1], vc[i]);
}

图论--双连通E-DCC缩点模板的更多相关文章

  1. POJ-3352 Road Construction,tarjan缩点求边双连通!

    Road Construction 本来不想做这个题,下午总结的时候发现自己花了一周的时间学连通图却连什么是边双连通不清楚,于是百度了一下相关内容,原来就是一个点到另一个至少有两条不同的路. 题意:给 ...

  2. 图论之tarjan真乃神人也,强连通分量,割点,桥,双连通他都会

    先来%一下Robert Tarjan前辈 %%%%%%%%%%%%%%%%%% 然后是热情感谢下列并不止这些大佬的博客: 图连通性(一):Tarjan算法求解有向图强连通分量 图连通性(二):Tarj ...

  3. hdu 4612 Warm up 双连通缩点+树的直径

    首先双连通缩点建立新图(顺带求原图的总的桥数,事实上因为原图是一个强连通图,所以桥就等于缩点后的边) 此时得到的图类似树结构,对于新图求一次直径,也就是最长链. 我们新建的边就一定是连接这条最长链的首 ...

  4. POJ 3177 Redundant Paths (边双连通+缩点)

    <题目链接> <转载于 >>>  > 题目大意: 有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新 ...

  5. 边双连通缩点+树dp 2015 ACM Arabella Collegiate Programming Contest的Gym - 100676H

    http://codeforces.com/gym/100676/attachments 题目大意: 有n个城市,有m条路,每条路都有边长,如果某几个城市的路能组成一个环,那么在环中的这些城市就有传送 ...

  6. UVA 10972 RevolC FaeLoN(边-双连通+缩点)

    很好的一道图论题,整整撸了一上午... 题意是给定一个无向图,要求将所有边变为有向边,求最少加入多少条有向边,使得该图强连通?这里先假设一个问题:给定一个无向子图,该子图具有怎样的性质才能使得将其无向 ...

  7. HDU4612Warm up 边双连通 Tarjan缩点

    N planets are connected by M bidirectional channels that allow instant transportation. It's always p ...

  8. POJ - 3177 Redundant Paths (边双连通缩点)

    题意:在一张图中最少可以添加几条边,使其中任意两点间都有两条不重复的路径(路径中任意一条边都不同). 分析:问题就是最少添加几条边,使其成为边双连通图.可以先将图中所有边双连通分量缩点,之后得到的就是 ...

  9. poj3352Road Construction 边双连通+伪缩点

    /* 对于边双连通分支,求法更为简单. 仅仅需在求出全部的桥以后,把桥边删除.\ 原图变成了多个连通块,则每一个连通块就是一个边双连通分支. 桥不属于不论什么 一个边双连通分支,其余的边和每一个顶点都 ...

随机推荐

  1. 2017蓝桥杯最大公共子串(C++B组)

    题目: 最大公共子串长度问题就是:求两个串的所有子串中能够匹配上的最大长度是多少.比如:"abcdkkk" 和 "baabcdadabc",可以找到的最长的公共 ...

  2. Vue项目添加动态浏览器头部title

    0. 直接上 预览链接 + 效果图 Vue项目添加动态浏览器头部title 1. 实现思路 ( 1 ) 从路由router里面得到组件的title ( 2 ) title存vuex (本项目已经封装h ...

  3. CH5105 Cookies (线性dp)

    传送门 解题思路: 贪心的想,贪婪值越大的孩子应该分得更多的饼干,那么先sort一遍在此基础上进行dp.最直观的方向,可以设dp[i][j]为前i个孩子一共分得j块饼干的怨恨最小值.然后转移第i+1个 ...

  4. 一、华为模拟器eNSP下载与安装教程

    简单介绍一下 eNSP: eNSP是一款由华为提供的免费的图形化网络仿真工具平台,它将完美呈现真实设备实景(包括华为最新的ARG3路由器和X7系列的交换机),支持大型网络模拟,让你有机会在没有真实设备 ...

  5. vue-cli3 按需引入 element-ui 报错

    报错信息: Cannot find module 'babel-preset-es2015' from .... 解决办法: 安装最新的 Babel 编译插件:@babel/preset-env 修改 ...

  6. 【Java】WrapperClass 包装类

    什么是包装类? 写写我的想法 就是对于对象和基本类型的无法匹配和强转,基本类型在面向对象的实例类型中,反而成了个特殊的数据类型的存在 在一些特定的情况,我们希望通过对象的方式去处理数据,但是基本类型的 ...

  7. vue2.x学习笔记(九)

    接着前面的内容:https://www.cnblogs.com/yanggb/p/12577948.html. 数组的更新检测 数组在javascript是一种特殊的对象,不是像普通的对象那样通过Ob ...

  8. 4. git log的常见用法

    git log ======见https://blog.csdn.net/daguanjia11/article/details/73823617 +++++++++++++++++++++++ 使用 ...

  9. [Laravel] 自带分页实现以及links方法不存在错误

    自带分页实现其实挺简单的,但是我在实现的时候报错!找了很久才找出原因! 废话不说上码 控制器LeeController.php层 <?php namespace App\Http\control ...

  10. SpringCloud(二)笔记之Eureka

    Eureka包含两个组件:Eureka Server和Eureka Client Eureka Server:提供服务注册服务,各个节点启动后,会在Eureka Server中进行注册 Eureka ...