题目描述

一块N x N(1<=N<=10)正方形的黑白瓦片的图案要被转换成新的正方形图案。写一个程序来找出将原始图案按照以下列转换方法转换成新图案的最小方式:

1:转90度:图案按顺时针转90度。

2:转180度:图案按顺时针转180度。

3:转270度:图案按顺时针转270度。

4:反射:图案在水平方向翻转(以中央铅垂线为中心形成原图案的镜像)。

5:组合:图案在水平方向翻转,然后再按照1到3之间的一种再次转换。

6:不改变:原图案不改变。

7:无效转换:无法用以上方法得到新图案。

如果有多种可用的转换方法,请选择序号最小的那个。

只使用1–7中的一个步骤来完成这次转换。

输入输出格式

输入格式:

第一行: 单独的一个整数N。

第二行到第N+1行: N行每行N个字符(不是“@”就是“-”);这是转换前的正方形。

第N+2行到第2*N+1行: N行每行N个字符(不是“@”就是“-”);这是转换后的正方形。

输出格式:

单独的一行包括1到7之间的一个数字(在上文已描述)表明需要将转换前的正方形变为转换后的正方形的转换方法。

输入输出样例

输入样例#1:

3
@-@
---
@@-
@-@
@--
--@

输出样例#1:

1

说明

题目翻译来自NOCOW。

这个题其实可以输入循环中就能把答案求出来,但是因为这个题比较简单,为了复习一下函数传二维数组的方法。比较好写,写一个旋转90°的函数,180就是旋转两次,270就是3次。然后镜像什么的再求也就容易很多。

下面是AC代码

#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
using namespace std;
char ob[11][11];
char ob2[11][11];
char obj1[11][11];
char obj2[11][11];
char obj3[11][11];
char obj4[11][11];
char obj5[11][11];
char obj6[11][11];
char obj7[11][11];
int n;
void zh(char a[][11],char b[][11]);
bool db(char a[][11],char b[][11]);
int main()
{
scanf("%d",&n);
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
{
scanf(" %c",&ob[i][j]);
obj4[i][n+1-j]= ob[i][j];
}
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
scanf(" %c",&ob2[i][j]);
zh(ob,obj1);
zh(obj1,obj2);
zh(obj2,obj3);
zh(obj4,obj5);
zh(obj5,obj6);
zh(obj6,obj7);
if(db(ob2,obj1) )cout<<1<<endl;
else if(db(ob2,obj2) )cout<<2<<endl;
else if(db(ob2,obj3) )cout<<3<<endl;
else if(db(ob2,obj4) )cout<<4<<endl;
else if(db(ob2,obj5) )cout<<5<<endl;
else if( db(ob2,obj6) )cout<<5<<endl;
else if( db(ob2,obj7) )cout<<5<<endl;
else if(db(ob2,ob) )cout<<6<<endl;
else cout<<7<<endl;
return 0;
} void zh(char a[][11],char b[][11])
{
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
{
b[i][j]=a[n+1-j][i];
}
}
bool db(char a[][11],char b[][11])
{
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
{
if(b[i][j]!=a[i][j])
return 0;
}
return 1;
}

USACO Training Section 1.2 [USACO1.2]方块转换 Transformations的更多相关文章

  1. 洛谷 P1205 [USACO1.2]方块转换 Transformations

    P1205 [USACO1.2]方块转换 Transformations 题目描述 一块N x N(1<=N<=10)正方形的黑白瓦片的图案要被转换成新的正方形图案.写一个程序来找出将原始 ...

  2. USACO Training Section 1.2 [USACO1.2]回文平方数

    题目描述 回文数是指从左向右念和从右向左念都一样的数.如12321就是一个典型的回文数. 给定一个进制B(2<=B<=20,由十进制表示),输出所有的大于等于1小于等于300(十进制下)且 ...

  3. [USACO1.2.2]方块转换 Transformations

    P1205 [USACO1.2]方块转换 Transformations 标签 搜索/枚举 USACO 题目描述 一块N x N(1<=N<=10)正方形的黑白瓦片的图案要被转换成新的正方 ...

  4. USACO Training Section 1.1 贪婪的送礼者Greedy Gift Givers

    P1201 [USACO1.1]贪婪的送礼者Greedy Gift Givers 题目描述 对于一群(NP个)要互送礼物的朋友,GY要确定每个人送出的钱比收到的多多少.在这一个问题中,每个人都准备了一 ...

  5. USACO Training Section 1.1 坏掉的项链Broken Necklace

    题目描述 你有一条由N个红色的,白色的,或蓝色的珠子组成的项链(3<=N<=350),珠子是随意安排的. 这里是 n=29 的二个例子: 第一和第二个珠子在图片中已经被作记号. 图片 A ...

  6. USACO Training Section 1.1 Your Ride Is Here

    题目描述 众所周知,在每一个彗星后都有一只UFO.这些UFO时常来收集地球上的忠诚支持者.不幸的是,他们的飞碟每次出行都只能带上一组支持者.因此,他们要用一种聪明的方案让这些小组提前知道谁会被彗星带走 ...

  7. USACO Training Section 1.2 双重回文数 Dual Palindrom

    题目描述 如果一个数从左往右读和从右往左读都是一样,那么这个数就叫做"回文数".例如,12321就是一个回文数,而77778就不是.当然,回文数的首和尾都应是非零的,因此0220就 ...

  8. USACO Training Section 1.1 题解(共4题)

    第一题 题目传送门:你的飞碟在这儿 分析 水题一道,输入两个字符串,将它们转换为数字并同时相乘,然后判断一下它们是不是对于47同余就可以了. 代码 #include<bits/stdc++.h& ...

  9. 等差数列 [USACO Training Section 1.4]

    题目描述 一个等差数列是一个能表示成a, a+b, a+2b,…, a+nb (n=0,1,2,3,…)的数列. 在这个问题中a是一个非负的整数,b是正整数.写一个程序来找出在双平方数集合(双平方数集 ...

随机推荐

  1. C语言 文件操作(三)

    1.fputs() int fputs(const char *s, FILE *stream); s 代表要输出的字符串的首地址,可以是字符数组名或字符指针变量名. stream 表示向何种流中输出 ...

  2. Flask 入门(六)

    连接数据库 任何一门后端语言都可以连接数据库,python-flask也不例外 flask利用SQLAlchemy ORM连接数据库 接下来,我门来练习如何连接数据库: 1.首先,电脑上得有mysql ...

  3. Scala函数式编程(六) 懒加载与Stream

    前情提要 Scala函数式编程指南(一) 函数式思想介绍 scala函数式编程(二) scala基础语法介绍 Scala函数式编程(三) scala集合和函数 Scala函数式编程(四)函数式的数据结 ...

  4. String 对象-->toLowerCase() 方法

    1.定义和用法 将字符串中所有的大写字符转换成小写字符,小写字符不变 返回转换后的结果字符串 语法: string.toLowerCase() 注意:不会改变字符串本身,仅以返回值的形式返回结果 举例 ...

  5. 树状数组模板--Color the ball

    Color the ball HDU - 1556 N个气球排成一排,从左到右依次编号为1,2,3....N.每次给定2个整数a b(a <= b),lele便为骑上他的“小飞鸽"牌电 ...

  6. 中国剩余定理(CRT)

    只看懂了CRT,EXCRT待补.... 心得:记不得这是第几次翻CRT了,每次都有迷迷糊糊的.. 中国剩余定理用来求解类似这样的方程组: 求解的过程中用到了同余方程. x=a1( mod x1) x= ...

  7. Maven 命令深度理解

    1.前言 Maven 命令看起来简单,一学即会 .其实,Maven 命令底层是插件的执行过程.了解插件和插件目标才有助于深刻的理解 Maven命令. 2.插件与命令的关系 Maven本质上是一个插件框 ...

  8. HTML学习过程-(1)

    记录我HTML的学习 (1) 最开始学习html是在因为在听北京理工大学教授讲的网络公开课上.当时老师讲的是网络爬虫,因为要爬取特定网页的信息,需要借助[正则表达式](https://baike.ba ...

  9. vue2.x学习笔记(十八)

    接着前面的内容:https://www.cnblogs.com/yanggb/p/12629705.html. 处理边界情况 这里记录的都是和处理边界情况有关的功能,即一些需要对vue的规则做一些小调 ...

  10. 详解 I/O流

    I/O流是用于处理设备之前信息传输的流,在我们今后的学习甚至是工作中,都是十分重要的. 在我们的日常生活中,也是很常见的,譬如:文件内容的合并.设备之键的文件传输,甚至是下载软件时的断点续传,都可以用 ...