Suffix Tree(后缀树)
这篇简单的谈谈后缀树原理及实现。
如前缀树原理一般,后缀trie树是将字符串的每个后缀使用trie树的算法来构造。例如banana的所有后缀:
0: banana
1: anana
2: nana
3: ana
4: na
5: a
按字典序排列后:
5: a
3: ana
1: anana
0: banana
4: na
2: nana
形成一个树形结构。
代码:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// banana中不重复的字符有:a b n
/*
* a b n
* n $ a a
* a n n $
* n $ a a
* a n $
* $ a
$*/
#define SIZE 27
#define Index(c) ((c) - 'a')
#define rep(i, a, b) for(i = a; i < b; i++)
typedef struct BaseNode {
struct BaseNode*next[SIZE];
char c;
int num;
} suffix_tree, *strie;
void initialize(strie* root)
{
int i;
*root = (strie)malloc(sizeof(suffix_tree));
(*root)->c = 0;
(*root)->num = -1;
rep(i, 0, SIZE) (*root)->next[i] = NULL;
}
void insert(strie*root, const char*str, int k)
{
suffix_tree*node = *root, *tail;
int i, j;
for (i = 0; str[i] != '\0'; i++)
{
if (node->next[Index(str[i])] == NULL)
{
tail = (strie)malloc(sizeof(suffix_tree));
tail->c = str[i];
tail->num = -1;
rep(j, 0, SIZE) tail->next[j] = NULL;
node->next[Index(str[i])] = tail;
}
node = node->next[Index(str[i])];
}
tail = (strie)malloc(sizeof(suffix_tree));
tail->c = '$';
tail->num = k;
rep(i, 0, SIZE) tail->next[i] = NULL;
node->next[SIZE - 1] = tail;
}
void show(suffix_tree*root)
{
if (root)
{
int i;
rep(i, 0, SIZE) show(root->next[i]);
printf("%c\n", root->c);
if (root->num > -1)
{
printf("%d\n", root->num);
}
}
}
void destory(strie*root)
{
if (*root)
{
int i;
rep(i, 0, SIZE) destory(&(*root)->next[i]);
free(*root);
*root = NULL;
}
}
int main()
{
suffix_tree*root; initialize(&root); char str[] = "banana", *p = str;
int i = 0;
while(*p)
{
insert(&root, p, i);
p++;
i++;
}
show(root);
destory(&root);
return 0;
}
时间复杂度分析:算法中对于建立一串长m的字符串,需要一个外层的m次循环 + 一个内层m次循环 + 一些常数,于是建立一颗后缀字典树所需的时间为O(m2),27的循环在这里可看作常数;
空间复杂度分析:一个字符的字符串长度为1,需要消耗的1个该字符 + 1个根节点 + 1个\$字符的空间,两个字符的字符串长度为2,需要消耗3个字符空间+ 1个根节点 + 2个\$空间...以此类推,发现总是含有1个根节点和m个\$字符,\$的个数等于字符串长度m,而存储的源字符串后缀所需的空间有如下规律:
$$ \begin{aligned} O(s_1) &= 1 \\ O(s_2) &= 1+2 \\ O(s_3) &= 1+2+3 \\ \cdot \cdot \cdot \\ O(s_m) &= 1+2+ \cdot \cdot \cdot + m \end{aligned} $$
设以长为m的字符串s建立后缀树T,于是有:
$$ O(T) = O(\frac{(1 + m)m}{2} + 1 + m) = O(m^2) $$
由于上面算法对于无重复的字符串来说空间复杂度比较大,所以使用路径压缩以节省空间,这样的树就称为后缀树,也可以通过下标来存储,如图:
p.s.写压缩路径的后缀树时,脑子犯傻了...错了,改天再把正确的补上。。。
路径压缩版后缀树:
#include <iostream>
using namespace std;
#define rep(i, a, b) for(int i = a; i < b; i++)
#define trans(c) (c - 'a')
#define SIZE 26
#define MAX (100010 << 2)
struct BaseNode {
int len;
const char*s;
int pos[MAX];
BaseNode*next[SIZE];
BaseNode()
{
len = 0;
rep(i, 0, MAX) pos[i] = 0;
rep(i, 0, SIZE) next[i] = nullptr;
}
BaseNode(const char*s, int p)
{
this->s = s, this->len = p;
rep(i, 0, MAX) pos[i] = 0;
rep(i, 0, SIZE) next[i] = nullptr;
}
};
class SuffixTree {
private:
BaseNode*root;
/**/
void add(const char*s, int p);
void print(BaseNode*r);
void destory(BaseNode*&r);
public:
SuffixTree()
{
root = nullptr;
}
void insert(const char*s);
void insert(string s)
{
insert(s.c_str());
}
void remove(const char*s)
{ }
void visual()
{
print(root);
}
bool match(const char*s);
bool match(string s)
{
match(s.c_str());
}
~SuffixTree()
{
destory(root);
}
};
void SuffixTree::add(const char*s, int p)
{
int i = 0; while (s[i]) i++;
if (!root->next[p]) root->next[p] = new BaseNode(s, i);
root->next[p]->pos[i] = i;
}
void SuffixTree::insert(const char*s)
{
root = new BaseNode();
while (*s)
{
add(s, trans(*s));
s++;
}
}
bool SuffixTree::match(const char*s)
{
const char* ps = root->next[trans(*s)]->s;
while (*s) if (*ps++ != *s++) return false;
return true;
}
void SuffixTree::print(BaseNode*r)
{
if (r)
{
rep(i, 0, SIZE)
if (r->next[i])
{
cout << i << ':' << endl;
rep(j, 0, r->next[i]->len + 1)
if (r->next[i]->pos[j])
{
rep(k, 0, r->next[i]->pos[j])
cout << r->next[i]->s[k];
cout << '$' << endl;
}
}
}
}
void SuffixTree::destory(BaseNode*&r)
{
if (r)
{
rep(i, 0, SIZE) destory(r->next[i]);
delete r;
}
}
int main()
{
SuffixTree st;
st.insert("banana");
st.visual();
if (st.match("na")) cout << "Yes" << endl;
else cout << "No" << endl;
return 0;
}
上面的后缀树都是对于一个字符串的处理方法,而广义后缀树将算法推广到了不同的字符串上,但我还没写过,改天补上。。。
参考:https://en.wikipedia.org/wiki/Suffix_tree
Suffix Tree(后缀树)的更多相关文章
- 后缀树(suffix tree)
参考: 从前缀树谈到后缀树 后缀树 Suffix Tree-后缀树 字典树(trie树).后缀树 一.前缀树 简述:又名单词查找树,tries树,一种多路树形结构,常用来操作字符串(但不限于字符串), ...
- Trie / Radix Tree / Suffix Tree
Trie (字典树) "A", "to", "tea", "ted", "ten", "i ...
- Trie树(代码),后缀树(代码)
Trie树系列 Trie字典树 压缩的Trie 后缀树Suffix tree 后缀树--ukkonen算法 Trie是通过对字符串进行预先处理,达到加快搜索速度的算法.即把文本中的字符串转换为树结构, ...
- 后缀树(Suffix Tree)
问题描述: 后缀树(Suffix Tree) 参考资料: http://www.cppblog.com/yuyang7/archive/2009/03/29 ...
- 后缀树的建立-Ukkonen算法
参考: Ukkonen算法讲解 Ukkonen算法动画 Ukkonen算法,以字符串abcabxabcd为例,先介绍一下运算过程,最后讨论一些我自己的理解. 需要维护以下三个变量: 当前扫描位置# 三 ...
- 笔试算法题(40):后缀数组 & 后缀树(Suffix Array & Suffix Tree)
议题:后缀数组(Suffix Array) 分析: 后缀树和后缀数组都是处理字符串的有效工具,前者较为常见,但后者更容易编程实现,空间耗用更少:后缀数组可用于解决最长公共子串问题,多模式匹配问题,最长 ...
- Suffix树,后缀树
body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gra ...
- 后缀树(Suffix Trie)子串匹配结构
Suffix Trie 又称后缀Trie或后缀树.它与Trie树的最大不同在于,后缀Trie的字符串集合是由指定字符串的后缀子串构成的.比如.完整字符串"minimize"的后缀子 ...
- CF504E Misha and LCP on Tree 后缀自动机+树链剖分+倍增
求树上两条路径的 LCP (树上每个节点代表一个字符) 总共写+调了6个多小时,终于过了~ 绝对是我写过的最复杂的数据结构了 我们对这棵树进行轻重链剖分,然后把所有的重链分正串,反串插入到广义后缀自动 ...
随机推荐
- hdu1874 (spfa 最短路)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1874 很简单的最短路问题,刚刚学习spfa,其实很简单,思想和一维动态规划差不多,数组d[i]表示起点 ...
- Spring 事务归纳
Spring transaction 什么是事务 A用户向B用户转帐100,第一步要从A帐户扣出100,第二步要将B帐户加上100.其中无论是第一步失败,还是第二步失败.都应该将A.B帐户的余额保持和 ...
- fiddler中文乱码解决方案
只用添加一个注册表变量就行 cmd窗口执行regedit命令,在弹出的注册表编辑界面找到fiddler 右击新建一个字符传值 HeaderEncodingGBK 结果如上图右所示~ 重启fiddler ...
- DataTable 数据批量写入数据库三种方法比较
DataTable数据批量写入数据库三种方法比较 1) insert循环插入: 2) sqldataadapter.update(dataset,tablename); 3) sqlbul ...
- 生成树计数 lighting 最终决定用这个模板! (有逆元的模板)
#include <cstdio> #include <cstring> #include <algorithm> #include <cmath> # ...
- linux建立动态库的软链接
复制动态库: /home/wmz/anaconda3/lib/ 删除原链接: 建立新链接: /home/wmz/anaconda3/lib/libstdc++.so. 问题的起源是,安装anacond ...
- 数据库程序接口——JDBC——功能第二篇——数据源之C3P0数据源
综述 C3P0由三部分内容组成.实例化对象,各配置项的含义,以及加载配置项的方式. 实例化对象的方式有三种,第一种方式直接new ComboPooledDataSource,第二种方式使用工厂类Dat ...
- matlab 绘制原始信号的谐波
这里以锯齿信号为例: clear;clc; figure time = 0:1/20:1000; wave = sawtooth(time); subplot(3, 1, 1); plot(time, ...
- Angular的启动过程
我们知道由命令 ng new project-name,cli将会创建一个基础的angular应用,我们是可以直接运行起来一个应用.这归功与cli已经给我们创建好了一个根模块AppModule,而根模 ...
- Linux - 常用Shell软件
tldr conda dstat htop oh-my-zsh https://github.com/nicolargo/glances neofetch