3分钟了解GPT Bert与XLNet的差异
译者 | Arno
来源 | Medium
XLNet是一种新的预训练模型,在20项任务中表现优于BERT,且有大幅度的提升。
这是什么原因呢?
在不了解机器学习的情况下,不难估计我们捕获的上下文越多,预测就越准确。
因此,模型能够深入而有效地捕获大多数上下文的能力是其提升的原因。
让我们玩一个游戏,在下面的上下文中,[Guess1]和[Guess2]分别是什么呢?
[‘Natural’, ‘language’, ‘processing’, ‘is’, ‘a’, ‘marriage’, ‘of’, [Guess1], [Guess2], ‘and’, ‘linguistics’]
考虑到3分钟的限制,我就直接揭示答案了。
答案: [‘Natural’, ‘language’, ‘processing’, ‘is’, ‘a’, ‘marriage’, ‘of’, ‘machine’,‘learning’, ‘and’, ‘linguistics’]
我们使用符号Pr(Guess | Context) 代表一个基于上下文词的猜测概率。
GPT中,我们从左到右阅读,因此我们不知道 ‘machine’, ‘learning’各自后面的下文:
Pr (‘machine’ | [‘Natural’, ‘language’, ‘processing’, ‘is’, ‘a’, ‘marriage’, ‘of’])
Pr (‘learning’ | [‘Natural’, ‘language’, ‘processing’, ‘is’, ‘a’, ‘marriage’, ‘of’, ‘machine’])
知道‘machine’实际上可以帮助你猜‘learning’,因为‘learning’经常跟随‘machine’,而‘machine learning’是现在很火热的术语。
BERT中,与GPT对比,我们能知道预测单词前向和后向上下文,但我们在猜测 ‘machine’和 ‘learning’时都是基于相同的上下文:
Pr (‘machine’ | [‘Natural’, ‘language’, ‘processing’, ‘is’, ‘a’, ‘marriage’, ‘of’, ‘and’, ‘linguistics’])
Pr (‘learning’ | [‘Natural’, ‘language’, ‘processing’, ‘is’, ‘a’, ‘marriage’, ‘of’, ‘and’, ‘linguistics’])
拥有‘linguistics’实际上可以帮助你猜测‘machine’ ‘learning’ ,因为你知道自然语言处理是机器学习和语言学的完美结合。即使你不知道,有了‘linguistics’的存在,你至少知道预测单词不是 ‘linguistics’。
你可以看到BERT的明显缺点是,它无法知道 ‘machine’ 和 ‘learning’之间的联系。
那么我们如何结合GPT和BERT的优点呢?
XLNet
排列!排列的作用是即使我们只从左到右阅读,排列也允许我们捕捉前向和后向上下文(从左到右阅读,从右到左阅读)。
其中一种排列可以让我们捕捉到前向和后向上下文:
[‘Natural’, ‘language’, ‘processing’, ‘is’, ‘a’, ‘marriage’, ‘of’, ‘and’, ‘linguistics’, ‘machine’, ‘learning’]
Pr (‘machine’ | [‘Natural’, ‘language’, ‘processing’, ‘is’, ‘a’, ‘marriage’, ‘of’, ‘and’, ‘linguistics’])
Pr(‘learning’ | [‘Natural’, ‘language’, ‘processing’, ‘is’, ‘a’, ‘marriage’, ‘of’, ‘and’, ‘linguistics’, ‘machine’])
这一次,你拥有完整的上下文,在猜测 ‘machine’之后,你可以立即猜测‘learning’。
你可以清楚地看到XLNet结合了GPT和BERT的优点。
当然,如果你想了解更多细节,请阅读XLNet论文[1]。
[1]: https://arxiv.org/pdf/1906.08237.pdf
欢迎关注磐创博客资源汇总站:
http://docs.panchuang.net/
欢迎关注PyTorch官方中文教程站:
http://pytorch.panchuang.net/
3分钟了解GPT Bert与XLNet的差异的更多相关文章
- 预训练语言模型整理(ELMo/GPT/BERT...)
目录 简介 预训练任务简介 自回归语言模型 自编码语言模型 预训练模型的简介与对比 ELMo 细节 ELMo的下游使用 GPT/GPT2 GPT 细节 微调 GPT2 优缺点 BERT BERT的预训 ...
- 百度ERNIE 2.0强势发布!16项中英文任务表现超越BERT和XLNet
2019年3月,百度正式发布NLP模型ERNIE,其在中文任务中全面超越BERT一度引发业界广泛关注和探讨. 今天,经过短短几个月时间,百度ERNIE再升级.发布持续学习的语义理解框架ERNIE 2. ...
- Transformer 和 Transformer-XL——从基础框架理解BERT与XLNet
目录写在前面1. Transformer1.1 从哪里来?1.2 有什么不同?1.2.1 Scaled Dot-Product Attention1.2.2 Multi-Head Attention1 ...
- 1分钟了解MyISAM与InnoDB的索引差异
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/z50L2O08e2u4afToR9A/article/details/82111747 <数据 ...
- XLNet:运行机制及和Bert的异同比较
这两天,XLNet貌似也引起了NLP圈的极大关注,从实验数据看,在某些场景下,确实XLNet相对Bert有很大幅度的提升.就像我们之前说的,感觉Bert打开两阶段模式的魔法盒开关后,在这条路上,会有越 ...
- GPT and BERT
目录 概 主要内容 GPT BERT Radford A., Narasimhan K., Salimans T. and Sutskever I. Improving language unders ...
- 2.69分钟完成BERT训练!新发CANN 5.0加持
摘要:快,着实有点快. 现在,经典模型BERT只需2.69分钟.ResNet只需16秒. 啪的一下,就能完成训练! 本文分享自华为云社区<这就是华为速度:2.69分钟完成BERT训练!新发CAN ...
- XLNet看这篇文章就足以!
文章链接:https://arxiv.org/pdf/1906.08237.pdf 代码链接:英文--https://github.com/zihangdai/xlnet 中文--https ...
- 预训练语言模型的前世今生 - 从Word Embedding到BERT
预训练语言模型的前世今生 - 从Word Embedding到BERT 本篇文章共 24619 个词,一个字一个字手码的不容易,转载请标明出处:预训练语言模型的前世今生 - 从Word Embeddi ...
随机推荐
- 【原创】从零开始搭建Electron+Vue+Webpack项目框架(五)预加载和Electron自动更新
导航: (一)Electron跑起来(二)从零搭建Vue全家桶+webpack项目框架(三)Electron+Vue+Webpack,联合调试整个项目(四)Electron配置润色(五)预加载及自动更 ...
- HTTP协议 有这篇文章足够了
HTTP 协议详解 HTTP(HyperText Transfer Protocol)超文本传输协议.其最初的设计目的是为了提供一种发布和接收HTML页面的方法. HTTP是一个客户端(用户)和服务端 ...
- 最通俗易懂的 Java 11 新特性讲解
大多数开发者还是沉浸在 Java 8 中,而 Java 14 将要在 2020 年 3 月 17 日发布了,而我还在写着 Java 11 的新特性.Java 11 是 Java 8 之后的第一个 LT ...
- Python学习笔记--装饰器的实验
装饰器既然可以增加原来函数的功能,那能不能改变传给原函数的参数呢? 我们实验一下,先上代码: #!/usr/bin/env python # -*- coding: utf-8 -*- # @Date ...
- 原型模式故事链(3)--JS的数据类型、以及区别、区分、转化
上一章--原型链讲解:传送门:https://segmentfault.com/a/11... 在上一章讲解原型链时提到了:所有的引用类型都有一个_proto_属性,称之为隐式原型.那么引用类型是什么 ...
- CSS实现响应式布局
用CSS实现响应式布局 响应式布局感觉很高大上,很难,但实际上只用CSS也能实现响应式布局要用的就是CSS中的没接查询,下面就介绍一下怎么运用: 使用@media 的三种方法 1.直接在CSS文件中使 ...
- 前端每日实战:39# 视频演示如何用纯 CSS 创作一个表达怀念童年心情的条纹彩虹心特效
效果预览 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/QxbmxJ 可交互视频教程 此视频 ...
- C#爬取微博文字、图片、视频(不使用Cookie)
前两天在网上偶然看到一个大佬OmegaXYZ写的文章,Python爬取微博文字与图片(不使用Cookie) 于是就心血来潮,顺手撸一个C#版本的. 其实原理也很简单,现在网上大多数版本都需要Cooki ...
- JZOJ 5230. 【NOIP2017模拟A组模拟8.5】队伍统计
5230. [NOIP2017模拟A组模拟8.5]队伍统计 (File IO): input:count.in output:count.out Time Limits: 1500 ms Memory ...
- 关于org.apache.ibatis.binding.BindingException: Invalid bound statement (not found): com.atguigu.crud.dao.DepartmentMapper.insertSelective的错误
今天我在使用mybatis逆向工程的时候,由于一个疏忽字打错了..结果花了一早上才把错误找全..广大小伙伴们一定要小心啊(能复制粘贴就别手打) 关于org.apache.ibatis.binding. ...