3分钟了解GPT Bert与XLNet的差异
译者 | Arno
来源 | Medium
XLNet是一种新的预训练模型,在20项任务中表现优于BERT,且有大幅度的提升。
这是什么原因呢?
在不了解机器学习的情况下,不难估计我们捕获的上下文越多,预测就越准确。
因此,模型能够深入而有效地捕获大多数上下文的能力是其提升的原因。
让我们玩一个游戏,在下面的上下文中,[Guess1]和[Guess2]分别是什么呢?
[‘Natural’, ‘language’, ‘processing’, ‘is’, ‘a’, ‘marriage’, ‘of’, [Guess1], [Guess2], ‘and’, ‘linguistics’]
考虑到3分钟的限制,我就直接揭示答案了。
答案: [‘Natural’, ‘language’, ‘processing’, ‘is’, ‘a’, ‘marriage’, ‘of’, ‘machine’,‘learning’, ‘and’, ‘linguistics’]
我们使用符号Pr(Guess | Context) 代表一个基于上下文词的猜测概率。
GPT中,我们从左到右阅读,因此我们不知道 ‘machine’, ‘learning’各自后面的下文:
Pr (‘machine’ | [‘Natural’, ‘language’, ‘processing’, ‘is’, ‘a’, ‘marriage’, ‘of’])
Pr (‘learning’ | [‘Natural’, ‘language’, ‘processing’, ‘is’, ‘a’, ‘marriage’, ‘of’, ‘machine’])
知道‘machine’实际上可以帮助你猜‘learning’,因为‘learning’经常跟随‘machine’,而‘machine learning’是现在很火热的术语。
BERT中,与GPT对比,我们能知道预测单词前向和后向上下文,但我们在猜测 ‘machine’和 ‘learning’时都是基于相同的上下文:
Pr (‘machine’ | [‘Natural’, ‘language’, ‘processing’, ‘is’, ‘a’, ‘marriage’, ‘of’, ‘and’, ‘linguistics’])
Pr (‘learning’ | [‘Natural’, ‘language’, ‘processing’, ‘is’, ‘a’, ‘marriage’, ‘of’, ‘and’, ‘linguistics’])
拥有‘linguistics’实际上可以帮助你猜测‘machine’ ‘learning’ ,因为你知道自然语言处理是机器学习和语言学的完美结合。即使你不知道,有了‘linguistics’的存在,你至少知道预测单词不是 ‘linguistics’。
你可以看到BERT的明显缺点是,它无法知道 ‘machine’ 和 ‘learning’之间的联系。
那么我们如何结合GPT和BERT的优点呢?
XLNet
排列!排列的作用是即使我们只从左到右阅读,排列也允许我们捕捉前向和后向上下文(从左到右阅读,从右到左阅读)。
其中一种排列可以让我们捕捉到前向和后向上下文:
[‘Natural’, ‘language’, ‘processing’, ‘is’, ‘a’, ‘marriage’, ‘of’, ‘and’, ‘linguistics’, ‘machine’, ‘learning’]
Pr (‘machine’ | [‘Natural’, ‘language’, ‘processing’, ‘is’, ‘a’, ‘marriage’, ‘of’, ‘and’, ‘linguistics’])
Pr(‘learning’ | [‘Natural’, ‘language’, ‘processing’, ‘is’, ‘a’, ‘marriage’, ‘of’, ‘and’, ‘linguistics’, ‘machine’])
这一次,你拥有完整的上下文,在猜测 ‘machine’之后,你可以立即猜测‘learning’。
你可以清楚地看到XLNet结合了GPT和BERT的优点。
当然,如果你想了解更多细节,请阅读XLNet论文[1]。
[1]: https://arxiv.org/pdf/1906.08237.pdf
欢迎关注磐创博客资源汇总站:
http://docs.panchuang.net/
欢迎关注PyTorch官方中文教程站:
http://pytorch.panchuang.net/
3分钟了解GPT Bert与XLNet的差异的更多相关文章
- 预训练语言模型整理(ELMo/GPT/BERT...)
目录 简介 预训练任务简介 自回归语言模型 自编码语言模型 预训练模型的简介与对比 ELMo 细节 ELMo的下游使用 GPT/GPT2 GPT 细节 微调 GPT2 优缺点 BERT BERT的预训 ...
- 百度ERNIE 2.0强势发布!16项中英文任务表现超越BERT和XLNet
2019年3月,百度正式发布NLP模型ERNIE,其在中文任务中全面超越BERT一度引发业界广泛关注和探讨. 今天,经过短短几个月时间,百度ERNIE再升级.发布持续学习的语义理解框架ERNIE 2. ...
- Transformer 和 Transformer-XL——从基础框架理解BERT与XLNet
目录写在前面1. Transformer1.1 从哪里来?1.2 有什么不同?1.2.1 Scaled Dot-Product Attention1.2.2 Multi-Head Attention1 ...
- 1分钟了解MyISAM与InnoDB的索引差异
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/z50L2O08e2u4afToR9A/article/details/82111747 <数据 ...
- XLNet:运行机制及和Bert的异同比较
这两天,XLNet貌似也引起了NLP圈的极大关注,从实验数据看,在某些场景下,确实XLNet相对Bert有很大幅度的提升.就像我们之前说的,感觉Bert打开两阶段模式的魔法盒开关后,在这条路上,会有越 ...
- GPT and BERT
目录 概 主要内容 GPT BERT Radford A., Narasimhan K., Salimans T. and Sutskever I. Improving language unders ...
- 2.69分钟完成BERT训练!新发CANN 5.0加持
摘要:快,着实有点快. 现在,经典模型BERT只需2.69分钟.ResNet只需16秒. 啪的一下,就能完成训练! 本文分享自华为云社区<这就是华为速度:2.69分钟完成BERT训练!新发CAN ...
- XLNet看这篇文章就足以!
文章链接:https://arxiv.org/pdf/1906.08237.pdf 代码链接:英文--https://github.com/zihangdai/xlnet 中文--https ...
- 预训练语言模型的前世今生 - 从Word Embedding到BERT
预训练语言模型的前世今生 - 从Word Embedding到BERT 本篇文章共 24619 个词,一个字一个字手码的不容易,转载请标明出处:预训练语言模型的前世今生 - 从Word Embeddi ...
随机推荐
- http协议入门---转载
http协议入门 ##(一). HTTP/0.9 HTTP 是基于 TCP/IP 协议的应用层协议.它不涉及数据包(packet)传输,主要规定了客户端和服务器之间的通信格式,默认使用80端口. 最早 ...
- sql -- update表子查询、多条件判断case when
表结构: 需求 思路: 求出平均数 select avg(user_total) as avg from user_level 更新他的等级 update user_level set user_ra ...
- UIView绘制原理,异步绘制
绘制原理 首先看一幅流程图 UIView调用setNeedsDisplay方法后,实际上并没有发生当前视图的绘制工作,而是在之后的某一时机进行绘制工作,为什么会在之后的某一时机进行绘制工作呢? 当UI ...
- sql03
1.约束 约束详解 ->约束的目的:保证数据的完整性. not null ->默认值约束.可空约束.主键约束.外键约束.唯一键约束.检查约束 1) 用sql语句为表添加新的字段 2) 为字 ...
- 前端开发--Mongodb篇
安装和启动 安装 官方安装文档 本地mac Os推荐使用Homebrew ⚠️ 目前直接使用--brew install mongodb-- 安装 mongodb 时提示:Error: No avai ...
- 基于Modelsim的直方图统计算法仿真
一.前言 本篇主要针对牟新刚编著<基于FPGA的数字图像处理及应用>第六章第五节中直方图统计相关类容进行总结,包括代码实现及 基于Modelsim的仿真.书读百遍,其意自现. 2020-0 ...
- mac 工具推荐
传送门: https://github.com/jaywcjlove/awesome-mac/blob/master/README-zh.md
- 用vue-cli进行npm run dev时候Cannot GET/
在用vue cli进行项目npm run dev 时候,页面Cannot GET/ 主要是把config/index.js里面的dev:{assetsPublicPath:'/'}改成了跟build里 ...
- etcdctl的使用
etcdctl是一个提供简洁命令的etcd客户端,使用etcdctl可以直接和etcd服务打交道,对etcd中的键值对进行增删改查. 安装etcdctl 下载etcdctl工具 下载地址:etcdct ...
- c++ 中的单例类模板的实现方法
1.什么是单例模式 在架构设计时,某些类在整个系统生命周期中最多只能有一个对象存在 ( Single Instance ).如超市收银系统,其外观主要由显示器(1个).扫描枪(1个).收款箱(1个)组 ...