目标

在本章中,我们将了解k近邻(kNN)算法的原理。

理论

kNN是可用于监督学习的最简单的分类算法之一。这个想法是在特征空间中搜索测试数据的最近邻。我们将用下面的图片来研究它。

在图像中,有两个族,蓝色正方形和红色三角形。我们称每一种为。他们的房屋显示在他们的城镇地图中,我们称之为特征空间。 (你可以将要素空间视为投影所有数据的空间。例如,考虑一个2D坐标空间。每个数据都有两个要素,x和y坐标。你可以在2D坐标空间中表示此数据,对吧?现在假设如果有三个要素,则需要3D空间;现在考虑N个要素,需要N维空间,对吗?这个N维空间就是其要素空间。在我们的图像中,你可以将其视为2D情况。有两个功能)

现在有一个新成员进入城镇并创建了一个新房屋,显示为绿色圆圈。他应该被添加到这些蓝色/红色家族之一中。我们称该过程为分类。我们所做的?由于我们正在处理kNN,因此让我们应用此算法。

一种方法是检查谁是他的最近邻。从图像中可以明显看出它是红色三角形家族。因此,他也被添加到了红色三角形中。此方法简称为“最近邻”,因为分类仅取决于最近邻。

但这是有问题的。红三角可能是最近的。但是,如果附近有很多蓝色方块怎么办?然后,蓝色方块在该地区的权重比红色三角更大。因此,仅检查最接近的一个是不够的。相反,我们检查一些k近邻的族。那么,无论谁占多数,新样本都属于那个族。在我们的图像中,让我们取k=3,即3个最近族。他有两个红色和一个蓝色(有两个等距的蓝色,但是由于k = 3,我们只取其中一个),所以他又应该加入红色家族。但是,如果我们取k=7怎么办?然后,他有5个蓝色族和2个红色族。太好了!!现在,他应该加入蓝色族。因此,所有这些都随k的值而变化。更有趣的是,如果k=4怎么办?他有2个红色邻居和2个蓝色邻居。这是一个平滑!因此最好将k作为奇数。由于分类取决于k个最近的邻居,因此该方法称为k近邻

同样,在kNN中,我们确实在考虑k个邻居,但我们对所有人都给予同等的重视,对吧?这公平吗?例如,以k=4的情况为例。我们说这是平局。但是请注意,这两个红色族比其他两个蓝色族离他更近。因此,他更应该被添加到红色。那么我们如何用数学解释呢?我们根据每个家庭到新来者的距离来给他们一些权重。对于那些靠近他的人,权重增加,而那些远离他的人,权重减轻。然后,我们分别添加每个族的总权重。谁得到的总权重最高,新样本归为那一族。这称为modified kNN

那么你在这里看到的一些重要内容是什么?

  • 你需要了解镇上所有房屋的信息,对吗?因为,我们必须检查新样本到所有现有房屋的距离,以找到最近的邻居。如果有许多房屋和家庭,则需要大量的内存,并且需要更多的时间进行计算。
  • 几乎没有时间进行任何形式的训练或准备。

现在让我们在OpenCV中看到它。

OpenCV中的kNN

就像上面一样,我们将在这里做一个简单的例子,有两个族(类)。然后在下一章中,我们将做一个更好的例子。

因此,在这里,我们将红色系列标记为Class-0(因此用0表示),将蓝色系列标记为Class-1(用1表示)。我们创建25个族或25个训练数据,并将它们标记为0类或1类。我们借助Numpy中的Random Number Generator来完成所有这些工作。

然后我们在Matplotlib的帮助下对其进行绘制。红色系列显示为红色三角形,蓝色系列显示为蓝色正方形。

import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt
# 包含(x,y)值的25个已知/训练数据的特征集
trainData = np.random.randint(0,100,(25,2)).astype(np.float32)
# 用数字0和1分别标记红色或蓝色
responses = np.random.randint(0,2,(25,1)).astype(np.float32)
# 取红色族并绘图
red = trainData[responses.ravel()==0]
plt.scatter(red[:,0],red[:,1],80,'r','^')
# 取蓝色族并绘图
blue = trainData[responses.ravel()==1]
plt.scatter(blue[:,0],blue[:,1],80,'b','s')
plt.show()

你会得到与我们的第一张图片相似的东西。由于你使用的是随机数生成器,因此每次运行代码都将获得不同的数据。

接下来启动kNN算法,并传递trainData和响应以训练kNN(它会构建搜索树)。

然后,我们将在OpenCV中的kNN的帮助下将一个新样本带入一个族并将其分类。在进入kNN之前,我们需要了解测试数据(新样本数据)上的知识。我们的数据应为浮点数组,其大小为$number\ of\ testdata\times number\ of\ features$。然后我们找到新加入的最近邻。我们可以指定我们想要多少个邻居。它返回:

  1. 给新样本的标签取决于我们之前看到的kNN理论。如果要使用“最近邻居”算法,只需指定k=1即可,其中k是邻居数。
  2. k最近邻的标签。
  3. 衡量新加入到每个最近邻的相应距离。

因此,让我们看看它是如何工作的。新样本被标记为绿色。

newcomer = np.random.randint(0,100,(1,2)).astype(np.float32)
plt.scatter(newcomer[:,0],newcomer[:,1],80,'g','o')
knn = cv.ml.KNearest_create()
knn.train(trainData, cv.ml.ROW_SAMPLE, responses)
ret, results, neighbours ,dist = knn.findNearest(newcomer, 3)
print( "result: {}\n".format(results) )
print( "neighbours: {}\n".format(neighbours) )
print( "distance: {}\n".format(dist) )
plt.show()

我得到了如下的结果:

result:  [[ 1.]]
neighbours: [[ 1. 1. 1.]]
distance: [[ 53. 58. 61.]]

它说我们的新样本有3个近邻,全部来自Blue家族。因此,他被标记为蓝色家庭。从下面的图可以明显看出:

如果你有大量数据,则可以将其作为数组传递。还获得了相应的结果作为数组。

# 10个新加入样本
newcomers = np.random.randint(0,100,(10,2)).astype(np.float32)
ret, results,neighbours,dist = knn.findNearest(newcomer, 3)
# 结果包含10个标签

附加资源

  1. NPTEL关于模式识别的注释,第11章

练习

欢迎关注磐创博客资源汇总站:
http://docs.panchuang.net/

欢迎关注PyTorch官方中文教程站:
http://pytorch.panchuang.net/

OpenCV中文官方文档:
http://woshicver.com/

OpenCV-Python 理解K近邻 | 五十三的更多相关文章

  1. 机器学习经典算法具体解释及Python实现--K近邻(KNN)算法

    (一)KNN依旧是一种监督学习算法 KNN(K Nearest Neighbors,K近邻 )算法是机器学习全部算法中理论最简单.最好理解的.KNN是一种基于实例的学习,通过计算新数据与训练数据特征值 ...

  2. 机器学习 Python实践-K近邻算法

    机器学习K近邻算法的实现主要是参考<机器学习实战>这本书. 一.K近邻(KNN)算法 K最近邻(k-Nearest Neighbour,KNN)分类算法,理解的思路是:如果一个样本在特征空 ...

  3. 用python实现k近邻算法

    用python写程序真的好舒服. code: import numpy as np def read_data(filename): '''读取文本数据,格式:特征1 特征2 -- 类别''' f=o ...

  4. 用Python从零开始实现K近邻算法

    KNN算法的定义: KNN通过测量不同样本的特征值之间的距离进行分类.它的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别.K通 ...

  5. Python机器学习基础教程-第2章-监督学习之K近邻

    前言 本系列教程基本就是摘抄<Python机器学习基础教程>中的例子内容. 为了便于跟踪和学习,本系列教程在Github上提供了jupyter notebook 版本: Github仓库: ...

  6. K近邻分类算法实现 in Python

    K近邻(KNN):分类算法 * KNN是non-parametric分类器(不做分布形式的假设,直接从数据估计概率密度),是memory-based learning. * KNN不适用于高维数据(c ...

  7. K近邻 Python实现 机器学习实战(Machine Learning in Action)

    算法原理 K近邻是机器学习中常见的分类方法之间,也是相对最简单的一种分类方法,属于监督学习范畴.其实K近邻并没有显式的学习过程,它的学习过程就是测试过程.K近邻思想很简单:先给你一个训练数据集D,包括 ...

  8. 机器学习之路: python k近邻分类器 KNeighborsClassifier 鸢尾花分类预测

    使用python语言 学习k近邻分类器的api 欢迎来到我的git查看源代码: https://github.com/linyi0604/MachineLearning from sklearn.da ...

  9. kd树 求k近邻 python 代码

      之前两篇随笔介绍了kd树的原理,并用python实现了kd树的构建和搜索,具体可以参考 kd树的原理 python kd树 搜索 代码 kd树常与knn算法联系在一起,knn算法通常要搜索k近邻, ...

随机推荐

  1. Java入门教程四(字符串处理)

    Java 语言的文本数据被保存为字符或字符串类型.字符及字符串的操作主要用到 String 类和 StringBuffer 类,如连接.修改.替换.比较和查找等. 定义字符串 直接定义字符串 直接定义 ...

  2. @JsonFormat、@DateTimeFormat注解,读取数据库晚一天问题

    @DateTimeFormat(pattern = "yyyy-MM-dd") @JsonFormat(pattern = "yyyy-MM-dd HH:mm:ss&qu ...

  3. MVC03

    1.添加model model 的作用是什么? 处理项目的数据模型,与数据库交互 .net推荐的处理数据的方式:使用 idd framework 1)新建model 右键models文件夹,选择添加, ...

  4. 探索 Redux4.0 版本迭代 论基础谈展望(对比 React context)

    Redux 在几天前(2018.04.18)发布了新版本,6 commits 被合入 master.从诞生起,到如今 4.0 版本,Redux 保持了使用层面的平滑过渡.同时前不久, React 也从 ...

  5. 钉钉小程序不用canvas在后端绘图前端用image标签获取图片的实践

    公司的需求要用电子员工卡代替用了N久的工作证,在各种场合刷二维码来代替刷卡.在钉钉小程序里实现.感觉这回又要躺坑里了. 钉钉小程序第一次做.我这个自封的GDI+大神才不要想用钉钉jsapi的方式用ca ...

  6. 聊聊.netcore采坑那一些事之系统时间and文件路径

    聊聊.netcore采坑那一些事之系统时间and文件路径 Hi,小伙伴大家好,最近工作比较忙,很久没有和大家分享点东西了.这个周末都加了两天班.公司的新项目都是采用.netcore来开发,在开发过程中 ...

  7. Android模拟器不能上网的解决方法

    我原来一直不用Android的模拟器,因为这东西的多年前的印象真的是很糟糕——启动半个小时,不支持OpenGL.即使后来有了x86镜像,在HAXM的支持下快的飞起,也不想用,因为NDK还要编译x86的 ...

  8. 写react项目要注意的事项

    1,className一定是大写字母开头,例如:App-logo,App,App-header. 2,有关react元素的更新,唯一办法是创建新元素,然后重新将其传入ReactDOM.render() ...

  9. 【09】openlayers 图片图层

    效果:  创建地图: var map = new ol.Map({ //设置显示地图的视图 view: new ol.View({ projection:'EPSG:4326',//投影方式 cent ...

  10. Hadoop集群搭建(三)~centos6.8网络配置

    安装完centos之后,进入系统,进行网络配置.主要分为五个部分: 修改虚拟机网络编辑器:配置Winodws访问虚拟机:配置centos网卡:通过网络名访问虚拟机配置网络服务. (一)虚拟机网络编辑器 ...