题目:http://poj.org/problem?id=2115

就是扩展欧几里得呗;

然而忘记除公约数...

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
ll A,B,C,k,a,b,x,y,g,s;
ll gcd(ll a,ll b){return a%b?gcd(b,a%b):b;}
void exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b){x=; y=; return;}
exgcd(b,a%b,x,y);//最近总是忘写这个啊...无力...
ll t=x; x=y; y=t-a/b*y;
}
int main()
{
while()
{
scanf("%lld%lld%lld%lld",&A,&B,&C,&k);
if(!A&&!B&&!C&&!k)return ;
a=C; b=1ll<<k; g=gcd(a,b); s=(B-A+b)%b;
if(s%g){printf("FOREVER\n"); continue;}
a/=g;//()
b/=g;//!!
s/=g;//!
exgcd(a,b,x,y);//ax+by=g
x=(x*s%b+b)%b;
printf("%lld\n",x);
}
}

poj2115 C Looooops——扩展欧几里得的更多相关文章

  1. POJ2115 C Looooops[扩展欧几里得]

    C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 24355   Accepted: 6788 Descr ...

  2. C Looooops(扩展欧几里得+模线性方程)

    http://poj.org/problem?id=2115 题意:给出A,B,C和k(k表示变量是在k位机下的无符号整数),判断循环次数,不能终止输出"FOREVER". 即转化 ...

  3. [POJ2115]C Looooops 拓展欧几里得

    原题入口 这个题要找到本身的模型就行了 a+c*x=b(mod 2k) ->  c*x+2k*y=b-a 求这个方程对于x,y有没有整数解. 这个只要学过拓展欧几里得(好像有的叫扩展欧几里德QA ...

  4. C Looooops(扩展欧几里得)

    C Looooops Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 20128 Accepted: 5405 Descripti ...

  5. POJ 2115 C Looooops(扩展欧几里得)

    辗转相除法(欧几里得算法) 时间复杂度:在O(logmax(a, b))以内 int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a ...

  6. POJ 2115 C Looooops扩展欧几里得

    题意不难理解,看了后就能得出下列式子: (A+C*x-B)mod(2^k)=0 即(C*x)mod(2^k)=(B-A)mod(2^k) 利用模线性方程(线性同余方程)即可求解 模板直达车 #incl ...

  7. POJ 2115 C Looooops(扩展欧几里得应用)

    题目地址:POJ 2115 水题. . 公式非常好推.最直接的公式就是a+n*c==b+m*2^k.然后能够变形为模线性方程的样子,就是 n*c+m*2^k==b-a.即求n*c==(b-a)mod( ...

  8. POJ - 2115C Looooops 扩展欧几里得(做的少了无法一眼看出)

    题目大意&&分析: for (variable = A; variable != B; variable += C) statement;这个循环式子表示a+c*n(n为整数)==b是 ...

  9. POJ2115 C Looooops 模线性方程(扩展欧几里得)

    题意:很明显,我就不说了 分析:令n=2^k,因为A,B,C<n,所以取模以后不会变化,所以就是求(A+x*C)%n=B 转化一下就是求 C*x=B-A(%n),最小的x 令a=C,b=B-A ...

随机推荐

  1. org.hibernate.AnnotationException: mappedBy reference an unknown target entity property

    org.hibernate.AnnotationException: mappedBy reference an unknown target entity property: xxxxxxx 原因是 ...

  2. 一段简单的手写Java计算器代码

    import java.awt.*;import java.awt.event.*;import javax.swing.*;import java.lang.*; public class Calc ...

  3. php第二十六节课

    会话购物车 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w ...

  4. MySql报Packet for query is too large错误

    mysql中执行sql的时候报以下错误:Packet for query is too large (1354 > 1024) 原因是mysql一次接收的报文太长,需要调整服务器参数max_al ...

  5. python json、 pickle 、shelve 模块

    json 模块 用于序列化的模块 json,用于字符串 和 python数据类型间进行转换 Json模块提供了四个功能:dumps.dump.loads.load #!/usr/bin/env pyt ...

  6. Django基础——ORM字段和字段参数

    ORM概念: 对象关系映射(Object Relational Mapping,简称ORM)模式是一种为了解决面向对象与关系数据库存在的互不匹配的现象( 1. 不同的程序员写的SQL水平参差不齐 2. ...

  7. 2.js原型的基本概念

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. 返回通知&异常通知&环绕通知

    [返回通知] LoggingAspect.java: @Aspect @Component public class LoggingAspect { /* * 在方法正常执行后执行的通知叫返回通知 * ...

  9. Leetcode 80.删除重复数组的重复项

    删除重复数组的重复项 给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素最多出现两次,返回移除后数组的新长度. 不要使用额外的数组空间,你必须在原地修改输入数组并在使用 O(1) 额外空间 ...

  10. N的阶乘 mod P

    基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 输入N和P(P为质数),求N! Mod P = ? (Mod 就是求模 %)   例如:n = 10, P = 11,10 ...