Reshapeing operations
Reshapeing operations
Suppose we have the following tensor:
t = torch.tensor([
[1,1,1,1],
[2,2,2,2],
[3,3,3,3]
], dtype=torch.float32)
We have two ways to get the shape:
> t.size()
torch.Size([3, 4])
> t.shape
torch.Size([3, 4])
The rank of a tensor is equal to the length of the tensor's shape.
> len(t.shape)
2
We can also deduce the number of elements contained within the tensor.
> torch.tensor(t.shape).prod()
tensor(12)
In PyTorch, there is a dedicated function for this:
> t.numel()
12
Reshaping a tensor in PyTorch
> t.reshape([2,6])
tensor([[1., 1., 1., 1., 2., 2.],
[2., 2., 3., 3., 3., 3.]])
> t.reshape([3,4])
tensor([[1., 1., 1., 1.],
[2., 2., 2., 2.],
[3., 3., 3., 3.]])
> t.reshape([4,3])
tensor([[1., 1., 1.],
[1., 2., 2.],
[2., 2., 3.],
[3., 3., 3.]])
> t.reshape(6,2)
tensor([[1., 1.],
[1., 1.],
[2., 2.],
[2., 2.],
[3., 3.],
[3., 3.]])
> t.reshape(12,1)
tensor([[1.],
[1.],
[1.],
[1.],
[2.],
[2.],
[2.],
[2.],
[3.],
[3.],
[3.],
[3.]])
In this example, we increase the rank to 3
:
> t.reshape(2,2,3)
tensor(
[
[
[1., 1., 1.],
[1., 2., 2.]
],
[
[2., 2., 3.],
[3., 3., 3.]
]
])
Note:PyTorch has another function view() that does the same thing as the reshape().
Changing shape by squeezing and unsqueezing
These functions allow us to expand or shrink the rank (number of dimensions) of our tensor.
> print(t.reshape([1,12]))
> print(t.reshape([1,12]).shape)
tensor([[1., 1., 1., 1., 2., 2., 2., 2., 3., 3., 3., 3.]])
torch.Size([1, 12])
> print(t.reshape([1,12]).squeeze())
> print(t.reshape([1,12]).squeeze().shape)
tensor([1., 1., 1., 1., 2., 2., 2., 2., 3., 3., 3., 3.])
torch.Size([12])
> print(t.reshape([1,12]).squeeze().unsqueeze(dim=0))
> print(t.reshape([1,12]).squeeze().unsqueeze(dim=0).shape)
tensor([[1., 1., 1., 1., 2., 2., 2., 2., 3., 3., 3., 3.]])
torch.Size([1, 12])
Let’s look at a common use case for squeezing a tensor by building a flatten function.
Flatten a tensor
Flattening a tensor means to remove all of the dimensions except for one.
A flatten operation on a tensor reshapes the tensor to have a shape that is equal to the number of elements contained in the tensor. This is the same thing as a 1d-array of elements.
def flatten(t):
t = t.reshape(1, -1)
t = t.squeeze()
return t
> t = torch.ones(4, 3)
> t
tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]])
> flatten(t)
tensor([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])
We'll see that flatten operations are required when passing an output tensor from a convolutional layer to a linear layer.
In these examples, we have flattened the entire tensor, however, it is possible to flatten only specific parts of a tensor. For example, suppose we have a tensor of shape [2,1,28,28]
for a CNN. This means that we have a batch of 2
grayscale images with height and width dimensions of 28 x 28
, respectively.
Here, we can specifically flatten the two images. To get the following shape: [2,1,784]
. We could also squeeze off the channel axes to get the following shape: [2,784]
.
Concatenating tensors
We combine tensors using the cat()
function
> t1 = torch.tensor([
[1,2],
[3,4]
])
> t2 = torch.tensor([
[5,6],
[7,8]
])
We can combine t1
and t2
row-wise (axis-0) in the following way:
> torch.cat((t1, t2), dim=0)
tensor([[1, 2],
[3, 4],
[5, 6],
[7, 8]])
We can combine them column-wise (axis-1) like this:
> torch.cat((t1, t2), dim=1)
tensor([[1, 2, 5, 6],
[3, 4, 7, 8]])
Flatten operation for a batch of image inputs to a CNN
Flattening specific axes of a tensor
We know that the tensor inputs to a convolutional neural network typically have 4 axes, one for batch size, one for color channels, and one each for height and width.
\]
To start, suppose we have the following three tensors.
t1 = torch.tensor([
[1,1,1,1],
[1,1,1,1],
[1,1,1,1],
[1,1,1,1]
])
t2 = torch.tensor([
[2,2,2,2],
[2,2,2,2],
[2,2,2,2],
[2,2,2,2]
])
t3 = torch.tensor([
[3,3,3,3],
[3,3,3,3],
[3,3,3,3],
[3,3,3,3]
])
Remember, batches are represented using a single tensor, so we’ll need to combine these three tensors into a single larger tensor that has three axes instead of 2
.
> t = torch.stack((t1, t2, t3))
> t.shape
torch.Size([3, 4, 4])
Here, we used the stack()
function to concatenate our sequence of three tensors along a new axis.
> t
tensor([[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]],
[[2, 2, 2, 2],
[2, 2, 2, 2],
[2, 2, 2, 2],
[2, 2, 2, 2]],
[[3, 3, 3, 3],
[3, 3, 3, 3],
[3, 3, 3, 3],
[3, 3, 3, 3]]])
All we need to do now to get this tensor into a form that a CNN expects is add an axis for the color channels. We basically have an implicit single color channel for each of these image tensors, so in practice, these would be grayscale images.
> t = t.reshape(3,1,4,4)
> t
tensor(
[
[
[
[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]
]
],
[
[
[2, 2, 2, 2],
[2, 2, 2, 2],
[2, 2, 2, 2],
[2, 2, 2, 2]
]
],
[
[
[3, 3, 3, 3],
[3, 3, 3, 3],
[3, 3, 3, 3],
[3, 3, 3, 3]
]
]
])
Flattening the tensor batch
Here are some alternative implementations of the flatten() function.
> t.reshape(1,-1)[0]
tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3])
> t.reshape(-1)
tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3])
> t.view(t.numel())
tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3])
> t.flatten()
tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3])
This flattened batch won’t work well inside our CNN because we need individual predictions for each image within our batch tensor, and now we have a flattened mess.
The solution here, is to flatten each image while still maintaining the batch axis. This means we want to flatten only part of the tensor. We want to flatten the, color channel axis with the height and width axes.
> t.flatten(start_dim=1).shape
torch.Size([3, 16])
> t.flatten(start_dim=1)
tensor(
[
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
]
)
Reshapeing operations的更多相关文章
- backup, file manipulation operations (such as ALTER DATABASE ADD FILE) and encryption changes on a database must be serialized.
昨天在检查YourSQLDba备份时,发现有台数据库做备份时出现了下面错误信息,如下所示: <Exec> <ctx>yMaint.ShrinkLog</ctx> ...
- HDU 5938 Four Operations(四则运算)
p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...
- ios基础篇(二十九)—— 多线程(Thread、Cocoa operations和GCD)
一.进程与线程 1.进程 进程是指在系统中正在运行的一个应用程序,每个进程之间是独立的,每个进程均运行在其专用且受保护的内存空间内: 如果我们把CPU比作一个工厂,那么进程就好比工厂的车间,一个工厂有 ...
- OpenCascade Modeling Algorithms Boolean Operations
Modeling Algorithms Boolean Operations of Opencascade eryar@163.com 布尔操作(Boolean Operations)是通过两个形状( ...
- A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- mouse scrollings and zooming operations in linux & windows are opposite
mouse scrollings and zooming operations in linux & windows are opposite. windows中, 鼠标滚动的方向是: 查看页 ...
- MongoDB—— 写操作 Core MongoDB Operations (CRUD)
MongoDB使用BSON文件存储在collection中,本文主要介绍MongoDB中的写操作和优化策略. 主要有三种写操作: Create Update ...
- MongoDB—— 读操作 Core MongoDB Operations (CRUD)
本文主要介绍内容:从MongoDB中请求数据的不同的方法 Note:All of the examples in this document use the mongo shell interface ...
随机推荐
- UVA 11806 组合数学+容斥
UVA: https://vjudge.net/problem/UVA-11806 AC代码 #include <bits/stdc++.h> #define pb push_back # ...
- HDU 4609 FFT+组合数学
3-idiots Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- cds.data:=dsp.data赋值有时会出现AV错误剖析
cds.data:=dsp.data赋值有时会出现AV错误剖析 如果QUERY没有查询到任何数据,cds.data:=dsp.data赋值会触发AV错误. 大家知道,DATASNAP有许多远程方法就是 ...
- MySQL入门笔记 - 视图
参考书籍<MySQL入门很简单> 1.视图定义 视图是从一个或者多个表中导出来的虚拟的表,透过这个窗口可以看到系统专门提供的数据,使用户可以只关心对自己有用的数据,方便用户对数据操作,同时 ...
- CentOS 6.X配置 NFS以及启动和mount挂载
一.环境介绍: 服务器:centos 192.168.1.225 客户端:centos 192.168.1.226 二.安装: NFS的安装配置:centos 5 : yum -y install n ...
- [PythonCode]扫描局域网的alive ip地址
内网的主机都是自己主动分配ip地址,有时候须要查看下有那些ip在使用,就写了个简单的脚本. linux和windows下都能够用,用多线程来ping1-255全部的地址,效率不高.2分钟左右. 先凑合 ...
- Office EXCEL 的绝对引用和相对引用如何理解
比如C1 = A1+B1,则我把C1的单元格往下拖拉的时候,C2会自动等于A2+B2,C3会自动等于A3+B3,而如果让G1 = $E$1+$F$1,则把G1单元格往下拖拉的时候,G2G3单元格都不会 ...
- Linux如何更新软件源
Linux软件源的设置方法 1 打开数据源配置文件 vi /etc/apt/sources.list 添加相关的数据源,可以选择以下的数据源,不要写太多,否则会影响更新速度. 之后使用ap ...
- SQL FULL OUTER JOIN 关键字
SQL FULL OUTER JOIN 关键字 SQL FULL OUTER JOIN 关键字 FULL OUTER JOIN 关键字只要左表(table1)和右表(table2)其中一个表中存在匹配 ...
- Android之弹出多级菜单
使用布局文件创建菜单:(多级菜单) 在res下创建目录menu(假设已经有啦就不用再创建了) 在该menu目录下创建XML文件这里我把文件名称命名为menu 在创建的menu.XML文件里 写入: & ...