Reshapeing operations

Suppose we have the following tensor:

t = torch.tensor([
[1,1,1,1],
[2,2,2,2],
[3,3,3,3]
], dtype=torch.float32)

We have two ways to get the shape:

> t.size()
torch.Size([3, 4]) > t.shape
torch.Size([3, 4])

The rank of a tensor is equal to the length of the tensor's shape.

> len(t.shape)
2

We can also deduce the number of elements contained within the tensor.

> torch.tensor(t.shape).prod()
tensor(12)

In PyTorch, there is a dedicated function for this:

> t.numel()
12

Reshaping a tensor in PyTorch

> t.reshape([2,6])
tensor([[1., 1., 1., 1., 2., 2.],
[2., 2., 3., 3., 3., 3.]]) > t.reshape([3,4])
tensor([[1., 1., 1., 1.],
[2., 2., 2., 2.],
[3., 3., 3., 3.]]) > t.reshape([4,3])
tensor([[1., 1., 1.],
[1., 2., 2.],
[2., 2., 3.],
[3., 3., 3.]]) > t.reshape(6,2)
tensor([[1., 1.],
[1., 1.],
[2., 2.],
[2., 2.],
[3., 3.],
[3., 3.]]) > t.reshape(12,1)
tensor([[1.],
[1.],
[1.],
[1.],
[2.],
[2.],
[2.],
[2.],
[3.],
[3.],
[3.],
[3.]])

In this example, we increase the rank to 3 :

> t.reshape(2,2,3)
tensor(
[
[
[1., 1., 1.],
[1., 2., 2.]
], [
[2., 2., 3.],
[3., 3., 3.]
]
])

Note:PyTorch has another function view() that does the same thing as the reshape().

Changing shape by squeezing and unsqueezing

These functions allow us to expand or shrink the rank (number of dimensions) of our tensor.

> print(t.reshape([1,12]))
> print(t.reshape([1,12]).shape)
tensor([[1., 1., 1., 1., 2., 2., 2., 2., 3., 3., 3., 3.]])
torch.Size([1, 12]) > print(t.reshape([1,12]).squeeze())
> print(t.reshape([1,12]).squeeze().shape)
tensor([1., 1., 1., 1., 2., 2., 2., 2., 3., 3., 3., 3.])
torch.Size([12]) > print(t.reshape([1,12]).squeeze().unsqueeze(dim=0))
> print(t.reshape([1,12]).squeeze().unsqueeze(dim=0).shape)
tensor([[1., 1., 1., 1., 2., 2., 2., 2., 3., 3., 3., 3.]])
torch.Size([1, 12])

Let’s look at a common use case for squeezing a tensor by building a flatten function.

Flatten a tensor

Flattening a tensor means to remove all of the dimensions except for one.

A flatten operation on a tensor reshapes the tensor to have a shape that is equal to the number of elements contained in the tensor. This is the same thing as a 1d-array of elements.

def flatten(t):
t = t.reshape(1, -1)
t = t.squeeze()
return t
> t = torch.ones(4, 3)
> t
tensor([[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]]) > flatten(t)
tensor([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])

We'll see that flatten operations are required when passing an output tensor from a convolutional layer to a linear layer.

In these examples, we have flattened the entire tensor, however, it is possible to flatten only specific parts of a tensor. For example, suppose we have a tensor of shape [2,1,28,28] for a CNN. This means that we have a batch of 2 grayscale images with height and width dimensions of 28 x 28, respectively.

Here, we can specifically flatten the two images. To get the following shape: [2,1,784]. We could also squeeze off the channel axes to get the following shape: [2,784].

Concatenating tensors

We combine tensors using the cat() function

> t1 = torch.tensor([
[1,2],
[3,4]
])
> t2 = torch.tensor([
[5,6],
[7,8]
])

We can combine t1 and t2 row-wise (axis-0) in the following way:

> torch.cat((t1, t2), dim=0)
tensor([[1, 2],
[3, 4],
[5, 6],
[7, 8]])

We can combine them column-wise (axis-1) like this:

> torch.cat((t1, t2), dim=1)
tensor([[1, 2, 5, 6],
[3, 4, 7, 8]])

Flatten operation for a batch of image inputs to a CNN

Flattening specific axes of a tensor

We know that the tensor inputs to a convolutional neural network typically have 4 axes, one for batch size, one for color channels, and one each for height and width.

\[(Batch Size, Channels, Height, Width)
\]

To start, suppose we have the following three tensors.

t1 = torch.tensor([
[1,1,1,1],
[1,1,1,1],
[1,1,1,1],
[1,1,1,1]
]) t2 = torch.tensor([
[2,2,2,2],
[2,2,2,2],
[2,2,2,2],
[2,2,2,2]
]) t3 = torch.tensor([
[3,3,3,3],
[3,3,3,3],
[3,3,3,3],
[3,3,3,3]
])

Remember, batches are represented using a single tensor, so we’ll need to combine these three tensors into a single larger tensor that has three axes instead of 2.

> t = torch.stack((t1, t2, t3))
> t.shape torch.Size([3, 4, 4])

Here, we used the stack() function to concatenate our sequence of three tensors along a new axis.

> t
tensor([[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]], [[2, 2, 2, 2],
[2, 2, 2, 2],
[2, 2, 2, 2],
[2, 2, 2, 2]], [[3, 3, 3, 3],
[3, 3, 3, 3],
[3, 3, 3, 3],
[3, 3, 3, 3]]])

All we need to do now to get this tensor into a form that a CNN expects is add an axis for the color channels. We basically have an implicit single color channel for each of these image tensors, so in practice, these would be grayscale images.

> t = t.reshape(3,1,4,4)
> t
tensor(
[
[
[
[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]
]
],
[
[
[2, 2, 2, 2],
[2, 2, 2, 2],
[2, 2, 2, 2],
[2, 2, 2, 2]
]
],
[
[
[3, 3, 3, 3],
[3, 3, 3, 3],
[3, 3, 3, 3],
[3, 3, 3, 3]
]
]
])
Flattening the tensor batch

Here are some alternative implementations of the flatten() function.

> t.reshape(1,-1)[0]
tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]) > t.reshape(-1)
tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]) > t.view(t.numel())
tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]) > t.flatten()
tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3])

This flattened batch won’t work well inside our CNN because we need individual predictions for each image within our batch tensor, and now we have a flattened mess.

The solution here, is to flatten each image while still maintaining the batch axis. This means we want to flatten only part of the tensor. We want to flatten the, color channel axis with the height and width axes.

> t.flatten(start_dim=1).shape
torch.Size([3, 16]) > t.flatten(start_dim=1)
tensor(
[
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
[3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
]
)

Reshapeing operations的更多相关文章

  1. backup, file manipulation operations (such as ALTER DATABASE ADD FILE) and encryption changes on a database must be serialized.

    昨天在检查YourSQLDba备份时,发现有台数据库做备份时出现了下面错误信息,如下所示: <Exec>   <ctx>yMaint.ShrinkLog</ctx> ...

  2. HDU 5938 Four Operations(四则运算)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...

  3. ios基础篇(二十九)—— 多线程(Thread、Cocoa operations和GCD)

    一.进程与线程 1.进程 进程是指在系统中正在运行的一个应用程序,每个进程之间是独立的,每个进程均运行在其专用且受保护的内存空间内: 如果我们把CPU比作一个工厂,那么进程就好比工厂的车间,一个工厂有 ...

  4. OpenCascade Modeling Algorithms Boolean Operations

    Modeling Algorithms Boolean Operations of Opencascade eryar@163.com 布尔操作(Boolean Operations)是通过两个形状( ...

  5. A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  6. A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  7. mouse scrollings and zooming operations in linux & windows are opposite

    mouse scrollings and zooming operations in linux & windows are opposite. windows中, 鼠标滚动的方向是: 查看页 ...

  8. MongoDB—— 写操作 Core MongoDB Operations (CRUD)

    MongoDB使用BSON文件存储在collection中,本文主要介绍MongoDB中的写操作和优化策略. 主要有三种写操作:        Create        Update        ...

  9. MongoDB—— 读操作 Core MongoDB Operations (CRUD)

    本文主要介绍内容:从MongoDB中请求数据的不同的方法 Note:All of the examples in this document use the mongo shell interface ...

随机推荐

  1. Codeforces 653A Bear and Three Balls【水题】

    题目链接: http://codeforces.com/problemset/problem/653/A 题意: 给定序列,找是否存在连续的三个数. 分析: 排序~去重~直接判断~~ 代码: #inc ...

  2. GOF 23种设计模式目录

    经典的gof 23种设计模式,目录大纲查看. 1. Singleton(单例模式) 保证一个类只有一个实例,并提供访问它的全局访问点. 2. Abstract Factory(抽象工厂模式) 提供一个 ...

  3. Last Defence - UVA7045

    https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...

  4. Construct Binary Tree from Preorder and Inorder Traversal (DFS,参考)

    Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  5. java.lang.ClassNotFoundException: org.springframework.web.servlet.DispatcherServlet

    新建Maven 项目的时候报错: java.lang.ClassNotFoundException: org.springframework.web.servlet.DispatcherServlet ...

  6. 【TFS 2017 CI/CD系列 - 03】-- Release篇

    为Project创建Release必须要先创建Build,若还没有Build definition请看上一篇文章:[TFS 2017 CI/CD系列 - 02]-- Build篇 一.创建Releas ...

  7. C# DataGridView,右键单击RowHeader时显示右键菜单怎么做?

        private void dataGridView1_CellClick(object sender, DataGridViewCellEventArgs e)         {       ...

  8. dubbo-admin安装和使用

    更新下链接,不知道是不是这个项目合入Apache的缘故,链接都变成了https://github.com/apache/incubator-dubbo/ 按照常理,直接去 https://github ...

  9. Tomcat+Servlet登录页面实例

    概念   Tomcat server是一个免费的开放源码的Web 应用server,属于轻量级应用server,在中小型系统和并发訪问用户不是非常多的场合下被普遍使用,是开发和调试JSP 程序的首选. ...

  10. 再说javascript 的__proto__ 和prototype 属性

    过了一段时间,没写 原生的 javascript 的了,感觉天天在用框架写代码,框架写代码完全限定死了你所需要思考的东西,只是在处理一些业务逻辑,真正的代码 都感觉不会写了. 突然发现,框架用的不熟悉 ...