题目描述

A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路。每一条道路对车辆都有重量限制,简称限重。现在有 q 辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物。

输入

第一行有两个用一个空格隔开的整数 n,m,表示 A 国有 n 座城市和 m 条道路。

接下来 m 行每行 3 个整数 x、y、z,每两个整数之间用一个空格隔开,表示从 x 号城市到 y 号城市有一条限重为 z 的道路。注意:x 不等于 y,两座城市之间可能有多条道路。

接下来一行有一个整数 q,表示有 q 辆货车需要运货。

接下来 q 行,每行两个整数 x、y,之间用一个空格隔开,表示一辆货车需要从 x 城市运输货物到 y 城市,注意:x 不等于 y。

输出

输出共有 q 行,每行一个整数,表示对于每一辆货车,它的最大载重是多少。如果货车不能到达目的地,输出-1。

样例输入

4 3
1 2 4
2 3 3
3 1 1
3
1 3
1 4
1 3

样例输出

3
-1
3

提示

对于 30%的数据,0 < n < 1,000,0 < m < 10,000,0 < q < 1,000;

对于 60%的数据,0 < n < 1,000,0 < m < 50,000,0 < q < 1,000;

对于 100%的数据,0 < n < 10,000,0 < m < 50,000,0 < q < 30,000,0 ≤ z ≤ 100,000。

Solution

#include<bits/stdc++.h>
using namespace std;
struct zwc
{
int x,y,z;
}a[100005];
int tot,n,m,Next[100005],head[100005],to[100005],f[100005],q,val[100005],fa[50005][23],dep[100005],w[50005][23];
bool vis[100005];
bool cmp(zwc x,zwc y)
{
return x.z>y.z;
}
int findfa(int x)
{
if (f[x]!=x) f[x]=findfa(f[x]);
return f[x];
}
void add(int x,int y,int z)
{
tot++;
Next[tot]=head[x];
to[tot]=y;
val[tot]=z;
head[x]=tot;
}
void dfs(int x)
{
vis[x]=true;
for (int i=head[x];i;i=Next[i])
{
int u=to[i];
if (vis[u]) continue;
dep[u]=dep[x]+1;
fa[u][0]=x;
w[u][0]=val[i];
dfs(u);
}
}
int lca(int x,int y)
{
if (findfa(x)!=findfa(y)) return -1;
int ans=1000000000;
if (dep[x]>dep[y]) swap(x,y);
for (int i=20;i>=0;i--)
{
if (dep[fa[y][i]]>=dep[x])
{
ans=min(ans,w[y][i]);
y=fa[y][i];
}
}
if (x==y) return ans;
for (int i=20;i>=0;i--)
{
if (fa[x][i]!=fa[y][i])
{
ans=min(ans,min(w[x][i],w[y][i]));
x=fa[x][i];
y=fa[y][i];
}
}
ans=min(min(w[x][0],w[y][0]),ans);
return ans;
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=1;i<=m;i++)
{
scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].z);
}
//kruskal
sort(a+1,a+1+m,cmp);
for (int i=1;i<=n;i++)
f[i]=i;
for (int i=1;i<=m;i++)
{
int p1=findfa(a[i].x);
int p2=findfa(a[i].y);
if (p1!=p2)
{
f[p1]=p2;
add(a[i].x,a[i].y,a[i].z);
add(a[i].y,a[i].x,a[i].z);
}
}
//倍增+LCA
for (int i=1;i<=n;i++)
{
if (!vis[i])
{
dep[i]=1;
dfs(i);
fa[i][0]=i;
w[i][0]=1000000000;
}
}
for (int j=1;j<=20;j++)
for (int i=1;i<=n;i++)
{
fa[i][j]=fa[fa[i][j-1]][j-1];
w[i][j]=min(w[i][j-1],w[fa[i][j-1]][j-1]);
}
scanf("%d",&q);
for (int i=1;i<=q;i++)
{
int x,y=0;
scanf("%d%d",&x,&y);
printf("%d\n",lca(x,y));
}
return 0;
}

题解 P1967 货车运输的更多相关文章

  1. luogu题解P1967货车运输--树链剖分

    题目链接 https://www.luogu.org/problemnew/show/P1967 分析 NOIp的一道裸题,直接在最大生成树上剖分取最小值一下就完事了,非常好写,常数也比较小,然而题解 ...

  2. 洛谷 P1967 货车运输

    洛谷 P1967 货车运输 题目描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物, 司机们想知道每辆车在 ...

  3. P1967 货车运输

    P1967 货车运输最大生成树+lca+并查集 #include<iostream> #include<cstdio> #include<queue> #inclu ...

  4. 洛谷P3379lca,HDU2586,洛谷P1967货车运输,倍增lca,树上倍增

    倍增lca板子洛谷P3379 #include<cstdio> struct E { int to,next; }e[]; ],anc[][],log2n,deep[],n,m,s,ne; ...

  5. Luogu P1967 货车运输(Kruskal重构树)

    P1967 货车运输 题面 题目描述 \(A\) 国有 \(n\) 座城市,编号从 \(1\) 到 \(n\) ,城市之间有 \(m\) 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 \ ...

  6. 【杂题总汇】NOIP2013(洛谷P1967) 货车运输

    [洛谷P1967] 货车运输 重做NOIP提高组ing... +传送门-洛谷P1967+ ◇ 题目(copy from 洛谷) 题目描述 A国有n座城市,编号从1到n,城市之间有m条双向道路.每一条道 ...

  7. 洛谷 P1967 货车运输(克鲁斯卡尔重构树)

    题目描述 AAA国有nn n座城市,编号从 11 1到n nn,城市之间有 mmm 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 qqq 辆货车在运输货物, 司机们想知道每辆车在不超过车 ...

  8. P1967 货车运输(倍增LCA,生成树)

    题目链接: https://www.luogu.org/problemnew/show/P1967 题目描述 A国有n座城市,编号从 1到n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制, ...

  9. 洛谷 P1967 货车运输 Label: 倍增LCA && 最小瓶颈路

    题目描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最多 ...

随机推荐

  1. jQuery easyui datagrid pagenation 的分页数据格式

    {"total":28,"rows":[    {"productid":"FI-SW-01","unitco ...

  2. 关于zookeeper的集群搭建

    在所有机器上安装完zookeeper之后, 开始进行集群的搭建 1. 修改 ../zookeeper/conf/zoo.cfg 文件 tickTime=2000 dataDir=/usr/local/ ...

  3. Unity3d 应用系统分析

  4. [App Store Connect帮助]七、在 App Store 上发行(3.2)提交至“App 审核”:查看 App 状态历史记录

    您可以查看您 App 的某一版本的 App 状态历史记录.在历史记录表中的每一行都包含 App 状态.App 状态更改时间,以及更改的发起人.使用此信息追踪“App 审核”流程中的 App. 若想在 ...

  5. 正睿多校联盟训练Week6

    并没有参加 Problem A.阿瓦分蛋糕输入文件: cake.in输出文件: cake.out时间限制: 1 second空间限制: 512 megabytes阿瓦为了庆祝自己自己成长为了一只可爱的 ...

  6. matlab实现算术编解码 分类: 图像处理 2014-06-01 23:01 357人阅读 评论(0) 收藏

    利用Matlab实现算术编解码过程,程序如下: clc,clear all; symbol=['abc']; pr=[0.4 0.4 0.2]; %各字符出现的概率 temp=[0.0 0.4 0.8 ...

  7. 如何用C#动态编译、执行代码[转]

    原文链接 在开始之前,先熟悉几个类及部分属性.方法:CSharpCodeProvider.ICodeCompiler.CompilerParameters.CompilerResults.Assemb ...

  8. JMeter(十三)进行简单的数据库(mysql)压力测试

    1.点击测试计划,再点击“浏览”,把JDBC驱动添加进来: 注:JDBC驱动一般的位置在java的安装地址下,路径类似于:    \java\jre\lib\ext 文件为:mysql-connect ...

  9. 416 Partition Equal Subset Sum 分割相同子集和

    详见:https://leetcode.com/problems/partition-equal-subset-sum/description/ C++: class Solution { publi ...

  10. HTML中的那些bug

    1.语法检测时提示有多余的结束标签 <!doctype html> <html> <head> <meta charset="utf-8" ...