Food Delivery (区间DP)
When we are focusing on solving problems, we usually prefer to stay in front of computers rather than go out for lunch. At this time, we may call for food delivery.
Suppose there are N people living in a straight street that is just lies on an X-coordinate axis. The ith person's coordinate is Xi meters. And in the street there is a take-out restaurant which has coordinates X meters. One day at lunchtime, each person takes an order from the restaurant at the same time. As a worker in the restaurant, you need to start from the restaurant, send food to the N people, and then come back to the restaurant. Your speed is V-1 meters per minute.
You know that the N people have different personal characters; therefore they have different feeling on the time their food arrives. Their feelings are measured by Displeasure Index. At the beginning, the Displeasure Index for each person is 0. When waiting for the food, the ith person will gain Bi Displeasure Index per minute.
If one's Displeasure Index goes too high, he will not buy your food any more. So you need to keep the sum of all people's Displeasure Index as low as possible in order to maximize your income. Your task is to find the minimal sum of Displeasure Index.
Input
The input contains multiple test cases, separated with a blank line. Each case is started with three integers N ( 1 <= N <= 1000 ), V ( V > 0), X ( X >= 0 ), then Nlines followed. Each line contains two integers Xi ( Xi >= 0 ), Bi ( Bi >= 0), which are described above.
You can safely assume that all numbers in the input and output will be less than 231- 1.
Please process to the end-of-file.
Output
For each test case please output a single number, which is the minimal sum of Displeasure Index. One test case per line.
Sample Input
5 1 0
1 1
2 2
3 3
4 4
5 5
Sample Output
55
题目大意:
在一个一维坐标轴上,有若干个点,已知餐厅的位置,以及外卖员的速度,不满意度为Bi*等待的时间,求外卖员从餐厅送到各个点的最小总不满意度。
可以将餐厅加进去并排列,以餐厅为中心,向外扩:
dp[i][j][0]:(需要将除了区间以内的数全部乘上这个差值)
dp[i+1][j][0]+(pre[i]+pre[n]-pre[j])*(a[i+1].x-a[i].x) 、dp[i+1][j][1]+(pre[i]+pre[n]-pre[j])*(a[j].x-a[i].x)
dp[i][j][1]:
dp[i][j-1][0]+(pre[i-1]+pre[n]-pre[j-1])*(a[j].x-a[i].x)、dp[i][j-1][1]+(pre[i-1]+pre[n]-pre[j-1])*(a[j].x-a[j-1].x)
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
long long dp[][][],pre[];
int n,v,x;
struct p
{
int x,b;
}a[];
bool cmp(p a,p b)
{
return a.x<b.x;
}
int main()
{
ios::sync_with_stdio(false);
while(cin>>n>>v>>x)
{
memset(dp,INF,sizeof dp);
for(int i=;i<n;i++)
cin>>a[i].x>>a[i].b;
a[n].x=x,a[n].b=;///将餐厅点加进去
sort(a,a+n+,cmp);
int pos=;///找到餐厅的位置
for(int i=;i<=n;i++)
if(a[i].x==x&&a[i].b==)
pos=i;
dp[pos][pos][]=dp[pos][pos][]=;
pre[]=a[].b;
for(int i=;i<=n;i++)///处理前缀和
pre[i]=pre[i-]+a[i].b;
for(int i=pos;i>=;i--)
for(int j=pos;j<=n;j++)
{
if(i==j) continue;
dp[i][j][]=min(dp[i][j][],dp[i+][j][]+(pre[i]+pre[n]-pre[j])*(a[i+].x-a[i].x));///左,前左
dp[i][j][]=min(dp[i][j][],dp[i+][j][]+(pre[i]+pre[n]-pre[j])*(a[j].x-a[i].x));///左,前右
dp[i][j][]=min(dp[i][j][],dp[i][j-][]+(pre[i-]+pre[n]-pre[j-])*(a[j].x-a[i].x));///右,前左
dp[i][j][]=min(dp[i][j][],dp[i][j-][]+(pre[i-]+pre[n]-pre[j-])*(a[j].x-a[j-].x));///右,前右
}
cout<<v*min(dp[][n][],dp[][n][])<<'\n';///v代表的是每米花多少时间
}
return ;
}
Food Delivery (区间DP)的更多相关文章
- ZOJ 3469Food Delivery(区间DP)
Food Delivery Time Limit: 2 Seconds Memory Limit: 65536 KB When we are focusing on solving prob ...
- ZOJ3469 Food Delivery —— 区间DP
题目链接:https://vjudge.net/problem/ZOJ-3469 Food Delivery Time Limit: 2 Seconds Memory Limit: 6553 ...
- ZOJ 3469 Food Delivery 区间DP
这道题我不会,看了网上的题解才会的,涨了姿势,现阶段还是感觉区间DP比较难,主要是太弱...QAQ 思路中其实有贪心的意思,n个住户加一个商店,分布在一维直线上,应该是从商店开始,先向两边距离近的送, ...
- ZOJ3469 Food Delivery 区间DP
题意:有一家快餐店送外卖,现在同时有n个家庭打进电话订购,送货员得以V-1的速度一家一家的运送,但是每一个家庭都有一个不开心的值,每分钟都会增加一倍,值达到一定程度,该家庭将不会再订购外卖了,现在为了 ...
- ZOJ - 3469 Food Delivery (区间dp)
When we are focusing on solving problems, we usually prefer to stay in front of computers rather tha ...
- zoj 3469 Food Delivery 区间dp + 提前计算费用
Time Limit: 2 Seconds Memory Limit: 65536 KB When we are focusing on solving problems, we usual ...
- ZOJ 3469 Food Delivery(区间DP好题)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4255 题目大意:在x轴上有n个客人,每个客人每分钟增加的愤怒值不同. ...
- 区间DP小结
也写了好几天的区间DP了,这里稍微总结一下(感觉还是不怎么会啊!). 但是多多少少也有了点感悟: 一.在有了一点思路之后,一定要先确定好dp数组的含义,不要模糊不清地就去写状态转移方程. 二.还么想好 ...
- ZOJ 3469 Food Delivery(区间DP)
https://vjudge.net/problem/ZOJ-3469 题意:在一条直线上有一个餐厅和n个订餐的人,每个人都有随时间上升的不满意值,从餐厅出发,计算出送完时最小的不满意值总和. 思路: ...
- [kuangbin带你飞]专题二十二 区间DP
ID Origin Title 17 / 60 Problem A ZOJ 3537 Cake 54 / 105 Problem B LightOJ 1422 Hallowee ...
随机推荐
- freertos之特点
主要特点:协程(co-routine):任务间的中断通信机制 支持可抢占式/协作式任务调度 .FreeRTOS-MPU 内核对象可以动态或静态分配 ...
- PKU_campus_2017_K Lying Island
思路: 题目链接http://poj.openjudge.cn/practice/C17K/ 状压dp.dp[i][j]表示第i - k人到第i人的状态为j的情况下前i人中最多有多少好人. 实现: # ...
- (转)Synopsys工具简介
DC Ultra--Design Compiler的最高版本 在Synopsys软件中完整的综合方案的核心是DC UltraTM,对所有设计而言它也是最好级别的综合平台.DC Ultra添加了全面的数 ...
- CPLD
复杂可编程逻辑器件(Complex Programmable Logic Device, CPLD),CPLD适合用来实现各种运算和组合逻辑(combinational logic).一颗CPLD内等 ...
- 纯手写的css3正方体旋转效果
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- 基于SAE的Python+Django部署
本文主要参考:http://www.cnblogs.com/qtsharp/archive/2012/01/12/2320774.html,另外包括自己的实际操作. 一.申请SAE帐号以及创建应用ya ...
- python程序的编辑和运行、变量
第一个python程序 python是解释型弱类型高级语言 常见的python解释器CPython.IPython.pypy.JPython.IronPython 方法一.python程序可以写在命令 ...
- QT +坐标系统 + 自定义控件 + 对象树的验证(自动进行析构)_内存回收机制
通过创建一个新的按钮类,来进行析构函数的验证,即对象树概念的验证.当程序结束的时候会自动的调用析构函数, 验证思路: 要验证按钮会不会自动的析构,(即在QPushButton类里面的析构函数添加qDe ...
- AndroidStudio连不上天天模拟器
问题:天天模拟器经常无法被Android Studio读取出来: 解决方法:手动连接它的端口: 方法一:找到Android\SDK\platform-tools目录,在当前目录下打开命令行窗口(shi ...
- ORA-03113: end-of-file on & ORA-07445
--------------ORA-03113: end-of-file on-------------- SQL> show parameter background_dump; NAME T ...