Heavy Transportation
Time Limit: 3000MS   Memory Limit: 30000K
        

Description

Background 

Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed
on which all streets can carry the weight. 

Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know. 



Problem 

You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's
place). You may assume that there is at least one path. All streets can be travelled in both directions.

Input

The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing
of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for
the scenario with a blank line.

Sample Input

1
3 3
1 2 3
1 3 4
2 3 5

Sample Output

Scenario #1:
4

Source

TUD Programming Contest 2004, Darmstadt, Germany

其实这个题看了好久都没搞懂意思,然后找了找博客原来就是给定n个站点(就这样理解吧),m条路,两个站点之间有且只有一条路,每条路都有一个最大载重量,求整个路径组成的图中的最大的承重;比如,1到2之间的载重是3,超过3便不能从这条路上过,而1到3之间的载重是4,这时已经将图连接起来了,所以最大值是4,如果选1->2->3,则1、2之间的路就不能过重量为5的升降机;

这样,就相当于求一个最大生成树的权值最小的那条边,不过用生成树的方法不是超时就RE,只好用最短路中的一个算法解决了,我们看,既然dijkstra是求单源的最短路,d[i]存储的是从起始点到i点的最短路,那么我们就用它来存起始点到i点权值最小的那个;这样答案不就出来了;想想看,这道题逻辑性很强,求能承载的最大重量实际上是求整个联通图中权值最小的,就像短板原理--能装多少水取决于最短的那块木板;

Kruskal生成树:RE,数组开大了又会超时;

#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1000+10;
struct node
{
int u,v,w;
}a[N];
int n,m,f[N];
int find(int x)
{
return f[x]==-1?x:f[x]=find(f[x]);
}
int cmp(node a,node b)
{
return a.w>b.w;
}
int ks(int n,int m)
{
for(int i=0;i<m;i++)
scanf("%d%d%d",&a[i].u,&a[i].v,&a[i].w);
sort(a,a+m,cmp);
int minn=10000000;
memset(f,-1,sizeof(f));
for(int i=0;i<m;i++)
{
int x=find(a[i].u);
int y=find(a[i].v);
if(x!=y)
{
minn=min(minn,a[i].w);
f[x]=y;
}
if(find(1)==find(n))
break;
}
return minn;
}
int main()
{
int t;
scanf("%d",&t);
int t1=t;
while(t--)
{
memset(a,0,sizeof(a));
scanf("%d%d",&n,&m);
int x=ks(n,m);
printf("Scenario #%d:\n%d\n",t1-t,x);
}
return 0;
}

Dijkstra最短路变形:AC

#include<cstdio>
#include<cmath>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1005;
int w[N][N],v[N],d[N],n,m,t,t1;
void dijkstra()
{
int a,b,c,i,j;
memset(w,0,sizeof(w));
for(i=1; i<=m; i++)
{
scanf("%d%d%d",&a,&b,&c);
w[a][b]=w[b][a]=c;
}
memset(v,0,sizeof(v));
for(i=1; i<=n; i++)
d[i]=w[1][i];
for(i=1;i<=n;i++)
{
int x,m=-1;
for(j=1;j<=n;j++)
if(!v[j]&&d[j]>m)
m=d[x=j];
v[x]=1;
for(j=1;j<=n;j++)
if(!v[j] && d[j]<min(d[x],w[x][j]))
d[j]=min(d[x],w[x][j]);
}
printf("Scenario #%d:\n",t1-t);
printf("%d\n\n",d[n]);
}
int main()
{
scanf("%d",&t);
t1=t;
while(t--)
{
scanf("%d%d",&n,&m);
dijkstra();
}
return 0;
}

POJ-1797Heavy Transportation,最短路变形,用dijkstra稍加修改就可以了;的更多相关文章

  1. POJ 1797 Heavy Transportation 最短路变形(dijkstra算法)

    题目:click here 题意: 有n个城市,m条道路,在每条道路上有一个承载量,现在要求从1到n城市最大承载量,而最大承载量就是从城市1到城市n所有通路上的最大承载量.分析: 其实这个求最大边可以 ...

  2. POJ 2253 Frogger ( 最短路变形 || 最小生成树 )

    题意 : 给出二维平面上 N 个点,前两个点为起点和终点,问你从起点到终点的所有路径中拥有最短两点间距是多少. 分析 : ① 考虑最小生成树中 Kruskal 算法,在建树的过程中贪心的从最小的边一个 ...

  3. poj 1797Heavy Transportation(dijkstra变形)

    题目链接:http://poj.org/problem?id=1797 题意:有n个城市,m条道路,在每条道路上有一个承载量,现在要求从1到n城市最大承载量,而最大承载量就是从城市1到城市n所有通路上 ...

  4. POJ1797 Heavy Transportation —— 最短路变形

    题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  5. POJ 2253 Frogger -- 最短路变形

    这题的坑点在POJ输出double不能用%.lf而要用%.f...真是神坑. 题意:给出一个无向图,求节点1到2之间的最大边的边权的最小值. 算法:Dijkstra 题目每次选择权值最小的边进行延伸访 ...

  6. Heavy Transportation POJ 1797 最短路变形

    Heavy Transportation POJ 1797 最短路变形 题意 原题链接 题意大体就是说在一个地图上,有n个城市,编号从1 2 3 ... n,m条路,每条路都有相应的承重能力,然后让你 ...

  7. POJ 3635 - Full Tank? - [最短路变形][手写二叉堆优化Dijkstra][配对堆优化Dijkstra]

    题目链接:http://poj.org/problem?id=3635 题意题解等均参考:POJ 3635 - Full Tank? - [最短路变形][优先队列优化Dijkstra]. 一些口胡: ...

  8. POJ 3635 - Full Tank? - [最短路变形][优先队列优化Dijkstra]

    题目链接:http://poj.org/problem?id=3635 Description After going through the receipts from your car trip ...

  9. POJ 2253 Frogger【最短路变形——路径上最小的最大权】

    链接: http://poj.org/problem?id=2253 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

随机推荐

  1. Vijos p1518河流 树形DP

    https://vijos.org/p/1518 这题代码我基本是抄的,实在太难想了.但是也学到了一些东西. 比如:多叉树转二叉树存,这个细细一想,确实使得在dfs的时候,实现起来方便很多. 说一说具 ...

  2. Windows API函数大全四

    10. API之硬件与系统函数 ActivateKeyboardLayout 激活一个新的键盘布局.键盘布局定义了按键在一种物理性键盘上的位置与含义 Beep 用于生成简单的声音 CharToOem ...

  3. lock和synchronized的同步区别与选择

    1. lock是一个接口,而synchronized是java的一个关键字,synchronized是内置的语言实现:(具体实现上的区别在<Java虚拟机>中有讲解底层的CAS不同,以前有 ...

  4. Vue2.0实现路由

    Vue2.0和1.0实现路由的方法有差别,现在我用Vue 2.0实现路由跳转,话不多说,直接上代码 HTML代码 <div class="tab"> <route ...

  5. Android RxJava小结

    一.如何使用 在build.gradle中添加依赖 dependencies { api 'io.reactivex:rxandroid:1.2.1' api 'io.reactivex:rxjava ...

  6. http://blog.chinaunix.net/uid-9845710-id-1996675.html snmpd配置

    http://blog.chinaunix.net/uid-9845710-id-1996675.html http://lihuipeng.blog.51cto.com/3064864/643960 ...

  7. 四次元新浪微博客户端Android源码

    四次元新浪微博客户端Android源码 源码下载:http://code.662p.com/list/11_1.html [/td][td] [/td][td] [/td][td] 详细说明:http ...

  8. 最简单的教程:在Ubuntu操作系统里安装Docker

    Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化.容器是完全使用沙箱机制,相互之间不会有任何 ...

  9. Git搭建自己的网站服务器(Linux)

    git服务器弄了半天终于搞定了,还是记录下吧,不然下次有得忘了 流程: 服务器 构建git目录 git用户,git组作为仓库管理 ssh授权(远程无需密码接入) hook(post-receive)自 ...

  10. 导入Excel表格(二)

    1. 提取session中的数据.并进行分页操作,上传excel表格,保存到临时表格. 初始化临时表格,提交表单,判断状态是否为真,若为真,则启用 导入到数据库 的按钮:为false,让查询的url ...