很早就看到这题了...但因为有个IOI标志,拖到现在才做

由于是以前在书上看到的,就没有想过其他算法,直接区间DP了...

方程式也挺好想的

跟我们平时做数学题求几个数乘积最大差不多

最大的*最大的

最小的*最小的(可能是负数)

这样两种情况

由于求最大中要用到最小值,我们在维护最大同时维护最小

最小的*最小的

最小的*最大的

也是两种情况

再考虑加法

最大:最大+最大

最小:最小+最小

各有一种情况

Tip 上面所述的类似于最大*最大都是左区间最大/小 和右区间最大/小

表达起来大概是这样的

	for(int len=2;len<=n;++len){
for(int i=1;i+len-1<=2*n;++i){
int j=i+len-1;
for(int k=i;k<j;++k){
if(opt[k+1]=='x')
cmax(dpd[i][j],dpd[i][k]*dpd[k+1][j],dpx[i][k]*dpx[k+1][j]),
cmin(dpx[i][j],dpd[i][k]*dpx[k+1][j],dpx[i][k]*dpd[k+1][j],dpx[i][k]*dpx[k+1][j]);
else
cmin(dpx[i][j],dpx[i][k]+dpx[k+1][j]),
cmax(dpd[i][j],dpd[i][k]+dpd[k+1][j]);
}
}
}

最后的代码

#include<cstdio>
#include<iostream>
#include<cstring>
#define inf (0x7fffffff)
#define writeln(x) write(x),puts("")
#define writep(x) write(x),putchar(' ')
using namespace std;
inline int read(){
int ans=0,f=1;char chr=getchar();
while(!isdigit(chr)){if(chr=='-') f=-1;chr=getchar();}
while(isdigit(chr)){ans=(ans<<3)+(ans<<1)+chr-48;chr=getchar();}
return ans*f;
}void write(int x){
if(x<0) putchar('-'),x=-x;
if(x>9) write(x/10);
putchar(x%10+'0');
}int n,a[155],dpx[155][155],dpd[155][155],ans=-inf;char opt[55];
inline void cmin(int &a,int b){if(b<a) a=b;}
inline void cmin(int &a,int b,int c){cmin(a,b),cmin(a,c);}
inline void cmin(int &a,int b,int c,int d){cmin(a,b,c),cmin(a,d);}
inline void cmax(int &a,int b){if(a<b)a=b;}
inline void cmax(int &a,int b,int c){cmax(a,b),cmax(a,c);} int main(){
n=read();
for(register int i=1;i<=n;++i) cin>>opt[i]>>a[i];
for(register int i=1;i<=n;++i) opt[i+n]=opt[i],a[i+n]=a[i];
for(int i=1;i<=n*2;++i)
for(int j=1;j<=n*2;++j)
(i==j)?(dpx[i][i]=dpd[i][i]=a[i]):(dpd[i][j]=-inf,dpx[i][j]=inf);
for(int len=2;len<=n;++len){
for(int i=1;i+len-1<=2*n;++i){
int j=i+len-1;
for(int k=i;k<j;++k){
if(opt[k+1]=='x')
cmax(dpd[i][j],dpd[i][k]*dpd[k+1][j],dpx[i][k]*dpx[k+1][j]),
cmin(dpx[i][j],dpd[i][k]*dpx[k+1][j],dpx[i][k]*dpd[k+1][j],dpx[i][k]*dpx[k+1][j]);
else
cmin(dpx[i][j],dpx[i][k]+dpx[k+1][j]),
cmax(dpd[i][j],dpd[i][k]+dpd[k+1][j]);
}
}
}
for(int i=1;i<=n;++i) cmax(ans,dpd[i][i+n-1]);writeln(ans);
for(int i=1;i<=n;i++) if(dpd[i][i+n-1]==ans) writep(i);
return 0;
}

[IOI1998]Polygon的更多相关文章

  1. IOI1998 Polygon [区间dp]

    [IOI1998]Polygon 题意翻译 题目可能有些许修改,但大意一致 多边形是一个玩家在一个有n个顶点的多边形上的游戏,如图所示,其中n=4.每个顶点用整数标记,每个边用符号+(加)或符号*(乘 ...

  2. [IOI1998]Polygon(区间dp)

    [IOI1998]Polygon 题意翻译 多边形是一个玩家在一个有n个顶点的多边形上的游戏,如图所示,其中n=4.每个顶点用整数标记,每个边用符号+(加)或符号*(乘积)标记. 第一步,删除其中一条 ...

  3. POJ 1179 IOI1998 Polygon

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5472   Accepted: 2334 Description Polyg ...

  4. 【洛谷P4342】[IOI1998]Polygon

    Polygon 比较裸的环形DP(也可以说是区间DP) 将环拆成链,复制到后面,做区间DP即可 #include<iostream> #include<cstdio> usin ...

  5. P4342 [IOI1998]Polygon

    题意翻译 题目可能有些许修改,但大意一致 多边形是一个玩家在一个有n个顶点的多边形上的游戏,如图所示,其中n=4.每个顶点用整数标记,每个边用符号+(加)或符号*(乘积)标记. 第一步,删除其中一条边 ...

  6. luogu P4342 [IOI1998]Polygon

    IOI早期这么多dp? 题目要求断掉环上的一边,我们可以断环为链,开两倍数组 容易想到dp,设\(f_{i,j}\)为区间\([i,j]\)的最大值,然后就是个枚举断点的区间dp 不过可能会有负数出现 ...

  7. 【洛谷 P4342】[IOI1998]Polygon(DP)

    题目链接 题意不再赘述. 这题和合并石子很类似,但是多了个乘法,而乘法是不满足"大大得大"的,因为两个非常小的负数乘起来也会很大,一个负数乘一个很大的整数会很小,所以我们需要添加一 ...

  8. 洛谷 P4342 [IOI1998]Polygon

    题目传送门 解题思路: 一道环形dp,只不过有个地方要注意,因为有乘法,两个负数相乘是正数,所以最小的数是负数,乘起来可能比最大值大,所以要记录最小值(这道题是紫题的原因). AC代码: #inclu ...

  9. [IOI1998] Polygon (区间dp,和石子合并很相似)

    题意: 给你一个多边形(可以看作n个顶点,n-1条边的图),每一条边上有一个符号(+号或者*号),这个多边形有n个顶点,每一个顶点有一个值 最初你可以把一条边删除掉,这个时候这就是一个n个顶点,n-2 ...

随机推荐

  1. linux & chmod & 777

    linux & chmod & 777 https://github.com/xgqfrms-GitHub/Node-CLI-Tools/blob/master/bash-shell- ...

  2. hihoCoder#1036 Trie图

    原题地址 看了这篇博文,总算是把Trie图弄明白了 Runtime Error了无数次,一直不知道为什么,于是写了个脚本生成了一组大数据,发现果然段错误了. 调试了一下午,总算闹明白了,为什么呢? 1 ...

  3. noip模拟赛 斐波那契

    分析:暴力分有90,真良心啊. a,b这么大,连图都建不出来,肯定是有一个规律.把每个点的父节点写出来:0 1 1 12 123 12345 12345678,可以发现每一个循环的长度刚好是斐波那契数 ...

  4. csu - 1566: The Maze Makers (bfs)

    http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1566 题意还是蛮难懂的,至少对于我来说,需要认真读题. 输入矩阵的每一个数字换成2进制后,顺时针围 ...

  5. Oracle表空间 ORA-01653:

    --1.查看表空间USERS使用情况SELECT T.TABLESPACE_NAME,D.FILE_NAME, D.AUTOEXTENSIBLE,D.BYTES,D.MAXBYTES,D.STATUS ...

  6. OCP知识点讲解 之 队列、资源与锁:RHCA|OCM|CCIE RedHat大中华地区前50位RHCA系统架构师:叶绍琛

      一.队列与共享资源 共享资源可以被多个会话.进程同时访问,因此它的访问需要保护.Oracle中,除了PGA,所有的东西(包括内存.磁盘.CPU.表.索引.事务等等,种类太多,一概用东西两字来代表) ...

  7. react 服务器端渲染 ssr 中 localstorage/history/window is not defined 解决方案

    1.原因 ssr 会在后端执行组件的 componentWillMount 以及在它这个生命周期之前的生命周期 也就是说 ssr 阶段是不会执行 componentDidMount 方法的 当你在 c ...

  8. 利用Python爬虫实现百度网盘自动化添加资源

    事情的起因是这样的,由于我想找几部经典电影欣赏欣赏,于是便向某老司机寻求资源(我备注了需要正规视频,绝对不是他想的那种资源),然后他丢给了我一个视频资源网站,说是比较有名的视频资源网站.我信以为真,便 ...

  9. [AngularJS 1.6] ngModelOptions and inheritance

    Problem with ngModleOptions before 1.6: <input type="text" name="fullname" ng ...

  10. firewalld 防火墙 nat 网络地址转换

    目的:实现以下效果 一. 准备环境 @1 三台虚拟机 @2  client 端 ip  192.168.1.2      server端   两块网卡 , ip 分别是 192.168.1.1   和 ...