Description

A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.

The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.

They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.

Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.

Input

The input file will contain one or more test cases. The first line of each test case contains an integer n, 
representing the number of different blocks in the following data set. The maximum value for n is 30. 
Each of the next n lines contains three integers representing the values xi, yi and zi. 
Input is terminated by a value of zero (0) for n. 

Output

For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height". 

Sample Input

1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0

Sample Output

Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342

经典的dp问题,刚开始接触有点难度

给出n种类型的长方体石块,给出每种的长宽高,每种石块有三种摆放方式,数量不限,可以累加着往上放,问最多能放多高

但是有个限定条件,长和宽必须均小于下面石块的长和宽才能放上去

转换成dp模型,就是dp[i]表示放置到第i个石块最高的高度,上面石块边长必须严格小于下面石块

 #include<cstdio>
#include<algorithm>
using namespace std;
struct stu
{
int l,w,h;
}st[];
bool cmp(stu a,stu b) //从顶往下判断所以从小往大排序
{
if(a.l != b.l)
return a.l < b.l;
else
return a.w < b.w;
}
int main()
{
int k=;
int dp[]; //dp[i]表示从顶开始到第i个木块的高度
int n,a,b,c,max0,num;
while(scanf("%d",&n) && n)
{
int i,j;
num=;
for(i = ; i <= n ; i++)
{
scanf("%d %d %d",&a,&b,&c);
st[num].l=a,st[num].w=b,st[num++].h=c; //每个木块有三种放法
st[num].l=a,st[num].w=c,st[num++].h=b;
st[num].l=b,st[num].w=a,st[num++].h=c;
st[num].l=b,st[num].w=c,st[num++].h=a;
st[num].l=c,st[num].w=a,st[num++].h=b;
st[num].l=c,st[num].w=b,st[num++].h=a;
}
sort(st,st+num,cmp);
for(i = ; i < num ; i++)
{
dp[i]=st[i].h;
}
for(i = ; i < num ; i++)
{
for(j = ; j < i ; j++)
{
if(st[j].l < st[i].l && st[j].w < st[i].w && dp[j]+st[i].h > dp[i])
{
dp[i]=dp[j]+st[i].h;
}
}
}
sort(dp,dp+num);
printf("Case %d: maximum height = ",k++);
printf("%d\n",dp[num-]);
}
return ;
}

杭电 1069 Monkey and Banana的更多相关文章

  1. HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径)

    HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径) Description A group of researchers ar ...

  2. HDU 1069 Monkey and Banana(转换成LIS,做法很值得学习)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit: 2000/1000 MS (Java ...

  3. HDU 1069 Monkey and Banana dp 题解

    HDU 1069 Monkey and Banana 纵有疾风起 题目大意 一堆科学家研究猩猩的智商,给他M种长方体,每种N个.然后,将一个香蕉挂在屋顶,让猩猩通过 叠长方体来够到香蕉. 现在给你M种 ...

  4. 杭电oj 1069 Monkey and Banana 最长递增子序列

    Monkey and Banana Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...

  5. HDU 1069 Monkey and Banana(二维偏序LIS的应用)

    ---恢复内容开始--- Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  6. HDU 1069 Monkey and Banana (DP)

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  7. HDU 1069—— Monkey and Banana——————【dp】

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  8. hdu 1069 Monkey and Banana

    Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  9. HDU 1069 Monkey and Banana(动态规划)

    Monkey and Banana Problem Description A group of researchers are designing an experiment to test the ...

随机推荐

  1. URAL 1890 . Money out of Thin Air (dfs序hash + 线段树)

    题目链接: URAL 1890 . Money out of Thin Air 题目描述: 给出一个公司里面上司和下级的附属关系,还有每一个人的工资,然后有两种询问: 1:employee x y z ...

  2. 【loj6034】「雅礼集训 2017 Day2」线段游戏

    #6034. 「雅礼集训 2017 Day2」线段游戏 内存限制:256 MiB 时间限制:1000 ms 标准输入输出 题目类型:传统 评测方式:Special Judge 上传者: 匿名 题目描述 ...

  3. 洛谷 P2216 [HAOI2007]理想的正方形 || 二维RMQ的单调队列

    题目 这个题的算法核心就是求出以i,j为左上角,边长为n的矩阵中最小值和最大值.最小和最大值的求法类似. 单调队列做法: 以最小值为例: q1[i][j]表示第i行上,从j列开始的n列的最小值.$q1 ...

  4. Broken BST CodeForces - 797D

    Broken BST CodeForces - 797D 题意:给定一棵任意的树,对树上所有结点的权值运行给定的算法(二叉查找树的查找算法)(treenode指根结点),问对于多少个权值这个算法会返回 ...

  5. 洛谷 P1199 三国游戏

    参考:Solution_ID:17 题解 更新时间: 2016-11-13 21:01 这道题要求最后得到的两方的默契值最大的武将,小涵的默契值大于计算机,首先,我们这个解法获胜的思路是,每个武将对应 ...

  6. LSP

    Liskov Substitution Principle里氏替换原则,OCP作为OO的高层原则,主张使用“抽象(Abstraction)”和“多态(Polymorphism)”将设计中的静态结构改为 ...

  7. P1664 每日打卡心情好

    题目背景 在洛谷中,打卡不只是一个简单的鼠标点击动作,通过每天在洛谷打卡,可以清晰地记录下自己在洛谷学习的足迹.通过每天打卡,来不断地暗示自己:我又在洛谷学习了一天,进而帮助自己培养恒心.耐心.细心. ...

  8. 洛谷P1251 餐巾计划问题(最小费用最大流)

    题意 一家餐厅,第$i$天需要$r_i$块餐巾,每天获取餐巾有三种途径 1.以$p$的费用买 2.以$f$的费用送到快洗部,并在$m$天后取出 3.以$s$的费用送到慢洗部,并在$n$天后取出 问满足 ...

  9. Dom 获取、Dom动态创建节点

    一.Dom获取 1.全称:Document     Object     Model 文档对象模型 2.我们常用的节点类型 元素(标签)节点.文本节点.属性节点(也就是标签里的属性). 3.docum ...

  10. match,location,history

    哇,平常写路由时基本就是简单的按照组件给的示例写,从来没有考虑为什么,又遇见了路由相关的问题,先记录一下问题,好好捋一下,哎,好香要个大佬来带带我呀,每次遇到问题要解决好久 问题: 判断是否登录之后跳 ...