Description

A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.

The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.

They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.

Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.

Input

The input file will contain one or more test cases. The first line of each test case contains an integer n, 
representing the number of different blocks in the following data set. The maximum value for n is 30. 
Each of the next n lines contains three integers representing the values xi, yi and zi. 
Input is terminated by a value of zero (0) for n. 

Output

For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height". 

Sample Input

1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0

Sample Output

Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342

经典的dp问题,刚开始接触有点难度

给出n种类型的长方体石块,给出每种的长宽高,每种石块有三种摆放方式,数量不限,可以累加着往上放,问最多能放多高

但是有个限定条件,长和宽必须均小于下面石块的长和宽才能放上去

转换成dp模型,就是dp[i]表示放置到第i个石块最高的高度,上面石块边长必须严格小于下面石块

 #include<cstdio>
#include<algorithm>
using namespace std;
struct stu
{
int l,w,h;
}st[];
bool cmp(stu a,stu b) //从顶往下判断所以从小往大排序
{
if(a.l != b.l)
return a.l < b.l;
else
return a.w < b.w;
}
int main()
{
int k=;
int dp[]; //dp[i]表示从顶开始到第i个木块的高度
int n,a,b,c,max0,num;
while(scanf("%d",&n) && n)
{
int i,j;
num=;
for(i = ; i <= n ; i++)
{
scanf("%d %d %d",&a,&b,&c);
st[num].l=a,st[num].w=b,st[num++].h=c; //每个木块有三种放法
st[num].l=a,st[num].w=c,st[num++].h=b;
st[num].l=b,st[num].w=a,st[num++].h=c;
st[num].l=b,st[num].w=c,st[num++].h=a;
st[num].l=c,st[num].w=a,st[num++].h=b;
st[num].l=c,st[num].w=b,st[num++].h=a;
}
sort(st,st+num,cmp);
for(i = ; i < num ; i++)
{
dp[i]=st[i].h;
}
for(i = ; i < num ; i++)
{
for(j = ; j < i ; j++)
{
if(st[j].l < st[i].l && st[j].w < st[i].w && dp[j]+st[i].h > dp[i])
{
dp[i]=dp[j]+st[i].h;
}
}
}
sort(dp,dp+num);
printf("Case %d: maximum height = ",k++);
printf("%d\n",dp[num-]);
}
return ;
}

杭电 1069 Monkey and Banana的更多相关文章

  1. HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径)

    HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径) Description A group of researchers ar ...

  2. HDU 1069 Monkey and Banana(转换成LIS,做法很值得学习)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit: 2000/1000 MS (Java ...

  3. HDU 1069 Monkey and Banana dp 题解

    HDU 1069 Monkey and Banana 纵有疾风起 题目大意 一堆科学家研究猩猩的智商,给他M种长方体,每种N个.然后,将一个香蕉挂在屋顶,让猩猩通过 叠长方体来够到香蕉. 现在给你M种 ...

  4. 杭电oj 1069 Monkey and Banana 最长递增子序列

    Monkey and Banana Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...

  5. HDU 1069 Monkey and Banana(二维偏序LIS的应用)

    ---恢复内容开始--- Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  6. HDU 1069 Monkey and Banana (DP)

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  7. HDU 1069—— Monkey and Banana——————【dp】

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  8. hdu 1069 Monkey and Banana

    Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  9. HDU 1069 Monkey and Banana(动态规划)

    Monkey and Banana Problem Description A group of researchers are designing an experiment to test the ...

随机推荐

  1. the little schemer 笔记(9)

    第九章 ...and Again, and Again, and, Again, ... 你想来点鱼子酱吗? 那就去找它吧. (looking a lat)是什么,其中a是 caviar, lat是( ...

  2. Alt+数字 输入特殊字符

    前言: 按住Alt键不放,再按(小键盘的)数字键,然后放开就可以输入特殊字符. 起始 终止  字符类别 0 255 基本与ASCII 码表对应        42657  42680  大写希腊字母 ...

  3. NFS与AutoNFS实例

    NFS概述: NFS,是Network File System的简写,即网络文件系统.网络文件系统是FreeBSD支持的文件系统中的一种,也被称为NFS. NFS允许一个系统在网络上与他人共享目录和文 ...

  4. LSP

    Liskov Substitution Principle里氏替换原则,OCP作为OO的高层原则,主张使用“抽象(Abstraction)”和“多态(Polymorphism)”将设计中的静态结构改为 ...

  5. [转]Android 如何监听返回键,弹出一个退出对话框

    本文转自:http://blog.csdn.net/sunnyfans/article/details/8094349 Android 如何监听返回键点击事件,并创建一个退出对话框, 防止自己写的应用 ...

  6. poj1190 生日蛋糕

    题意: 要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体. 设从下往上数第i(1 <= i <= M)层蛋糕是半径为Ri, 高度为Hi的圆柱.当i < M时,要求Ri > ...

  7. hihocoder offer收割编程练习赛8 B 拆字游戏

    思路: 模拟,dfs. 注意题目中的trick,输出一块的时候不要把其他块也输出了. 实现: #include <cstring> #include <iostream> #i ...

  8. void运算符

    void是一元运算符,它出现在操作数之前,操作数可以是任意类型,操作数会照常计算,但忽略计算结果并返回undefined.由于void会忽略操作数的值,因此在操作数具有副作用的时候使用void来让程序 ...

  9. react ant design路由配置

    最初的时候,只使用了antd中的menu,header和footer都是自己写的组件,在写路由时,总是报如下错误: 相关的路由配置如下: 在网上查的说是组件未暴露出去或者是return 这一行必须有个 ...

  10. BOM学习-javascript计时器小结

    <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...