【模板】插头dp
题解:
插头$dp$中经典的回路问题。
首先了解一下插头。
一个格子,上下左右四条边对应四个插头。就像这样:

四个插头。
一个完整的哈密顿回路,经过的格子一定用且仅用了两个插头。
所以所有被回路经过的格子有六种状态,即左上,左右,左下,上右,上下,右下。
这几个就是插头$dp$的基本。
然后我们来了解一下轮廓线。

红线就叫轮廓线。
我们可以利用轮廓线作为状态dp,将轮廓线一点点右推+下推,直到推完,这样我们就可以得出全局答案啦!!!
但是怎么转移……
插头!
我们可以稍微讨论一下,讨论拐角处的插头状态,然后转移就好了。
听起来很简单恶心。
实际上很简单恶心。
现在我们突然想到一个问题,就是状态怎么记录。
主要有两种方法,一种叫最小表示法(不是字符串的最小表示法),一种叫括号序列。
最小表示法,是将互相联通的插头归入一类。如果我们将其采用字典序最小的方法表示,那么对于某条轮廓线表示法与轮廓线状态一一对应。
括号表示法,是由于网格中两条哈密顿回路路径不可相交的性质。
如果我们认为回路有方向,比如轮廓线左面的为进,右面的为出,那我们可以将进看作‘(’,将出看作‘)’。
由于上面那条性质,我们可以知道一个括号序列对应一种轮廓线状态。
而且括号表示法比最小表示法好写。
括号表示法怎么用?
三进制。0表示'-',1表示'(',2表示')'。
压成一个数字然后用挂链存起来就好了。
(我用的括号表示法)
现在我们就差转移了。
(其实我非常不愿意在博客里写但是良心的我还是写了)
状态1:)(
直接用下面这个接上即可。

而且刚好满足括号匹配。
状态2:(-或)-
两种情况。
或
状态3:-)或-(
还是两种情况。
或
状态4:))或((
这个我们还是要放状态1的那个块。
但是不满足括号匹配怎么办?
向左/向右找一个换上。
举个例子,比如说原序列是:(()(()))()(),
然后中间两个接在一起,序列就应该成为:(()()--)()()
注意那个变号。
状态5:--
直接放插头。

状态6:()
一旦合并说明括号序列清空。
所以只能在最后一格合并状态6。
所以我们要知道最后一格在哪。
没有状态7。
上述状态都是在当前格子可填且插头指向格子可填时可选。
然后上代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 15
#define ll long long
#define M 100000
int n,m;
ll bas[N];
char ch[N][N];
struct Map
{
int hed[M+],cnt[];
struct EG
{
int nxt;ll to,w;
}e[<<][];
void ae(int f,ll t,ll w,int k)
{
e[++cnt[k]][k].to = t;
e[cnt[k]][k].nxt = hed[f];
e[cnt[k]][k].w = w;
hed[f] = cnt[k];
}
void push(ll u,ll d,int k)
{
int f = (int)(u%M);
for(int j=hed[f];j;j=e[j][k].nxt)
if(e[j][k].to==u)
{
e[j][k].w+=d;
return ;
}
ae(u%M,u,d,k);
}
void clear(int k)
{
memset(hed,,sizeof(hed));
cnt[k] = ;
}
}mp;
ll ans;int tx,ty;
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
scanf("%s",ch[i]+);
for(int j=;j<=m;j++)
if(ch[i][j]=='.')
tx=i,ty=j;
}
bas[] = ;
for(int i=;i<=m+;i++)bas[i]=bas[i-]<<;
mp.push(,,);
for(int k=,i=;i<=n;i++)
{
for(int j=;j<=mp.cnt[k];j++)mp.e[j][k].to<<=;
for(int j=;j<=m;j++)
{
k^=;mp.clear(k);
for(int o=;o<=mp.cnt[!k];o++)
{
ll now = mp.e[o][!k].to,val = mp.e[o][!k].w;
int lp = (now>>(j-)*)&,rp = (now>>j*)&;
if(ch[i][j]=='*')
{
if(!lp&&!rp)
{
mp.push(now,val,k);
}
}else
{
if(!lp&&!rp)
{
if(ch[i+][j]=='.'&&ch[i][j+]=='.')
{
ll tmp = now+bas[j-]+bas[j]*;
mp.push(tmp,val,k);
}
}else if(!lp&&rp)
{
if(ch[i+][j]=='.')
{
ll tmp = now+bas[j-]*rp-bas[j]*rp;
mp.push(tmp,val,k);
}
if(ch[i][j+]=='.')
{
ll tmp = now;
mp.push(tmp,val,k);
}
}else if(lp&&!rp)
{
if(ch[i+][j]=='.')
{
ll tmp = now;
mp.push(tmp,val,k);
}
if(ch[i][j+]=='.')
{
ll tmp = now-bas[j-]*lp+bas[j]*lp;
mp.push(tmp,val,k);
}
}else
{
if(lp==&&rp==)
{
ll tmp = now-bas[j-]-bas[j];
int sum = ;
for(int j0=j+;j0<=m+;j0++)
{
if(((now>>(j0-)*)&)==)sum++;
if(((now>>(j0-)*)&)==)sum--;
if(!sum)
{
mp.push(tmp-bas[j0-],val,k);
break;
}
}
}else if(lp==&&rp==)
{
ll tmp = now-bas[j-]*-bas[j]*;
int sum = ;
for(int j0=j-;j0>=;j0--)
{
if(((now>>(j0-)*)&)==)sum--;
if(((now>>(j0-)*)&)==)sum++;
if(!sum)
{
mp.push(tmp+bas[j0-],val,k);
break;
}
}
}else
{
if(lp==&&rp==)
{
ll tmp = now-bas[j-]*-bas[j];
mp.push(tmp,val,k);
}else if(i==tx&&j==ty)ans+=val;
}
}
}
}
}
}
printf("%lld\n",ans);
return ;
}
【模板】插头dp的更多相关文章
- 模板—插头dp(Ural 1519 Formula 1)
括号表示法: 据说比下一个要快而且灵活. #include<iostream> #include<cstring> #include<cstdio> #define ...
- 插头DP模板
/* 插头dp模板 抄的GNAQ 的 括号表示法 */ #include<cstdio> #include<algorithm> #include<cstring> ...
- 模板:插头dp
前言: 严格来讲有关dp的都不应该叫做模板,因为dp太活了,但是一是为了整理插头dp的知识,二是插头dp有良好的套路性,所以姑且还叫做模板吧. 这里先推荐一波CDQ的论文和这篇博客http://www ...
- bzoj1814 Ural 1519 Formula 1(插头dp模板题)
1814: Ural 1519 Formula 1 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 924 Solved: 351[Submit][Sta ...
- LG5056 【模板】插头dp
题意 题目背景 ural 1519 陈丹琦<基于连通性状态压缩的动态规划问题>中的例题 题目描述 给出n*m的方格,有些格子不能铺线,其它格子必须铺,形成一个闭合回路.问有多少种铺法? 输 ...
- P5056 【模板】插头dp
\(\color{#0066ff}{ 题目描述 }\) 给出n*m的方格,有些格子不能铺线,其它格子必须铺,形成一个闭合回路.问有多少种铺法? \(\color{#0066ff}{输入格式}\) 第1 ...
- 插头dp
插头dp 感受: 我觉得重点是理解,算法并不是直接想出怎样由一种方案变成另一种方案.而是方案本来就在那里,我们只是枚举状态统计了答案. 看看cdq的讲义什么的,一开始可能觉得状态很多,但其实灰常简单 ...
- hdu1964之插头DP求最优值
Pipes Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Subm ...
- 插头dp初探
问题描述 插头dp用于解决一类可基于图连通性递推的问题.用插头来表示轮廓线上的连通性,然后根据连通性与下一位结合讨论进行转移. 表示连通性的方法 与字符串循环最小表示不同,这种方法用于给轮廓线上的联通 ...
随机推荐
- 704. Binary Search
Given a sorted (in ascending order) integer array nums of n elements and a target value, write a fun ...
- 51nod 1094 【水题】
暴力即可!!! #include <stdio.h> #include <string.h> #include <iostream> using namespace ...
- P5169 xtq的异或和(FWT+线性基)
传送门 我咋感觉我学啥都是白学-- 首先可以参考一下这一题,从中我们可以知道只要知道两点间任意一条路径以及整个图里所有环的线性基,就可以得知这两个点之间的所有路径的异或和 然而我好像并不会求线性基能张 ...
- bug日志-天坑,Spring Security的登陆报错:An internal error occurred while trying to authenticate the user.
在学习Spring Security的时候,我的编辑器给我报错:An internal error occurred while trying to authenticate the user. 明明 ...
- android内存溢出 java.lang.OutOfMemoryError
今天在做ListView 的时候.想做一个音乐列表模块,前面是图片,后面是分类名称,如下图: 结果运行时候,LogCat是总是报 java.lang.OutOfMemoryError的错误,顾名思义, ...
- jQuery笔记之热点搜索排名小demo
先来看一下成品图: <!DOCTYPE html> <html lang="en"> <head> <meta charset=" ...
- Nginx系列篇一:linux中安装Nginx
提示: 如遇到yum或者wget的问题, 请详见--->杂集:更换centos yum源 请详见--->杂集:关于VMware中linux使用NAT模式配置 1.安装nginx需要的环境 ...
- FZu Problem 2236 第十四个目标 (线段树 + dp)
题目链接: FZu Problem 2236 第十四个目标 题目描述: 给出一个n个数的序列,问这个序列内严格递增序列有多少个?不要求连续 解题思路: 又遇到了用线段树来优化dp的题目,线段树节点里 ...
- Educational Codeforces Round 24 A
There are n students who have taken part in an olympiad. Now it's time to award the students. Some o ...
- UVa 1220 Party at Hali-Bula 晚会
#include<cstdio> #include<algorithm> #include<cstring> #include<iostream> #i ...