扫雷

描述

相信大家都玩过扫雷的游戏。那是在一个n*n的矩阵里面有一些雷,要你根据一些信息找出雷来。万圣节到了,“余”任过流行起了一种简单的扫雷游戏,这个游戏规则和扫雷一样,如果某个格子没有雷,那么它里面的数字表示和他8连通的格子里面雷的数目。现在棋盘是n*2的,第一列里某些格子是雷,而第二列没有雷,如:
o 1
* 2
* 3
* 2
o 2
* 2
* 2 ('*'代表有雷,'o'代表无雷)
由于第一类的雷有可能有多种方案满足第二列的数的限制,你的任务即根据第二列的信息求第一列雷有多少中摆放方案。

格式

输入格式

第一行为N,第二行有N个数,依次为第二列的格子中的数。(1<=N<=10000)

输出格式

一个数,即第一列中雷的摆放方案数。

样例1

样例输入1

2
1 1

样例输出1

2

限制

1s

来源

NOIP2006夏令营

题目链接:

  https://www.vijos.org/p/1193

题目大意:

  按照扫雷得规则,雷局为N*2的矩形,且雷只在第一列,第二列为第一列雷的分布数量。求满足第二列要求的第一列的雷的排列方案数

题目思路:

  【动态规划】

  f[i][j]表示第i,i+1行第一列的状态为j的方案数。j=00,01,10,11(0,1,2,3)

  通过枚举第i行的第二列为0,1,2,3来转移。

  初始值要枚举第一行第二列的0,1,2,3.

  可以将N*2的矩阵简化为循环矩阵。

 /****************************************************

     Author : Coolxxx
Copyright 2017 by Coolxxx. All rights reserved.
BLOG : http://blog.csdn.net/u010568270 ****************************************************/
#include<bits/stdc++.h>
#pragma comment(linker,"/STACK:1024000000,1024000000")
#define abs(a) ((a)>0?(a):(-(a)))
#define lowbit(a) (a&(-a))
#define sqr(a) ((a)*(a))
#define mem(a,b) memset(a,b,sizeof(a))
const double eps=1e-;
const int J=;
const int mod=;
const int MAX=0x7f7f7f7f;
const double PI=3.14159265358979323;
const int N=;
using namespace std;
typedef long long LL;
double anss;
LL aans;
int cas,cass;
int n,m,lll,ans;
int a[N];
int f[N][];
int main()
{
#ifndef ONLINE_JUDGE
// freopen("1.txt","r",stdin);
// freopen("2.txt","w",stdout);
#endif
int i,j,k;
double x,y,z;
// for(scanf("%d",&cass);cass;cass--)
// for(scanf("%d",&cas),cass=1;cass<=cas;cass++)
// while(~scanf("%s",s))
while(~scanf("%d",&n))
{
mem(f,);
for(i=;i<=n;i++)
scanf("%d",&a[i]);
if(a[]==)f[][]=;
if(a[]==)f[][]=f[][]=;
if(a[]==)f[][]=;
for(i=;i<n;i++)
{
if(a[i]==)
{
f[i][]=f[i-][];
}
if(a[i]==)
{
f[i][]=f[i-][];
f[i][]=f[i-][];
f[i][]=f[i-][];
}
if(a[i]==)
{
f[i][]=f[i-][];
f[i][]=f[i-][];
f[i][]=f[i-][];
}
if(a[i]==)
{
f[i][]=f[i-][];
}
}
if(a[n]==)ans=f[n-][];
if(a[n]==)ans=f[n-][]+f[n-][];
if(a[n]==)ans=f[n-][];
printf("%d\n",ans);
}
return ;
}
/*
// //
*/

Vijos 1193 扫雷 【动态规划】的更多相关文章

  1. vijos p1193 扫雷

      描述 相信大家都玩过扫雷的游戏.那是在一个n*n的矩阵里面有一些雷,要你根据一些信息找出雷来.万圣节到了,“余”任过流行起了一种简单的扫雷游戏,这个游戏规则和扫雷一样,如果某个格子没有雷,那么它里 ...

  2. Vijos 1404 遭遇战 - 动态规划 - 线段树 - 最短路 - 堆

    背景 你知道吗,SQ Class的人都很喜欢打CS.(不知道CS是什么的人不用参加这次比赛). 描述 今天,他们在打一张叫DUSTII的地图,万恶的恐怖分子要炸掉藏在A区的SQC论坛服务器!我们SQC ...

  3. 【动态规划】Vijos P1218 数字游戏(NOIP2003普及组)

    题目链接: https://vijos.org/p/1218 题目大意: 一个N个数的环,分成M块,块内的数求和%10,最后每块地值累乘,求最大和最小. n(1≤n≤50)和m(1≤m≤9)太小了可以 ...

  4. 【动态规划】Vijos P1493 传纸条(NOIP2008提高组第三题)

    题目链接: https://vijos.org/p/1493 题目大意: 二取方格数,从(1,1)向下或向右走到(n,m)走两次,每个走到的格子值只能被取一次所能取到的最大值. (n,m<=50 ...

  5. 【动态规划】Vijos P1143 三取方格数(NOIP2000提高组)

    题目链接: https://vijos.org/p/1143 题目大意: NxN的矩阵,每个值只能取一次,从(1,1)走到(n,n)走三次能取得的最大值. 题目思路: [动态规划] f[x1][y1] ...

  6. 【动态规划】Vijos P1121 马拦过河卒

    题目链接: https://vijos.org/p/1616 题目大意: 卒从(0,0)走到(n,m),只能向下或向右,不能被马一步碰到或走到马,有几种走法. 题目思路: [动态规划] 把马控制的地方 ...

  7. 【动态规划】Vijos P1616 迎接仪式

    题目链接: https://vijos.org/p/1616 题目大意: 长度为N的字符串,只含‘j’和‘z’,可以将任意两个字符调换K次,求能够拥有的最多的'jz'串. 题目思路: [动态规划] 首 ...

  8. 【动态规划】Vijos P1680 距离

    题目链接: https://vijos.org/p/1680 题目大意: 设有字符串X,我们称在X的头尾及中间插入任意多个空格后构成的新字符串为X的扩展串,如字符串X为”abcbcd”,则字符串“ab ...

  9. 【动态规划】【最长公共子序列】Vijos P1111 小胖的水果

    题目链接: https://vijos.org/p/1111 题目大意: 多组数据,给两个字符串s1,s2,求把s1,s2拆开从前往后合并后最短是多少 apple + peach = appleach ...

随机推荐

  1. spring的IOC的简单理解

    之前看了一下源码,看的挺吃力,只能是慢慢看了. 简单说一下springIOC的我的理解,IOC也叫控制反转,可以有效的减低各个组件之间的耦合度 想象一下,如果不用IOC,那么系统里面会有大量的new ...

  2. Python之turtle库-小猪佩奇

    Python之turtle库-小猪佩奇 #!/usr/bin/env python # coding: utf-8 # Python turtle库官方文档:https://docs.python.o ...

  3. 51NOD 2368 珂朵莉的旅行

    >>这是原题传送门<< 答案参考来自 http://www.cnblogs.com/sugewud/p/9822933.html 思路:思维题OR规律题?个人没写出来,脑子里只 ...

  4. 集训第四周(高效算法设计)N题 (二分查找优化题)

    原题:poj3061 题意:给你一个数s,再给出一个数组,要求你从中选出m个连续的数,m越小越好,且这m个数之和不小于s 这是一个二分查找优化题,那么区间是什么呢?当然是从1到数组长度了.比如数组长度 ...

  5. HTML、CSS常用技巧

    一.HTML 在介绍HTML之前,我们先看一下HTML的文档树结构,主要包括哪些: (一).头部标签 1,Doctype Doctype告诉浏览器使用什么样的HTML或XHTML规范来解析HTML文档 ...

  6. cadence中元件所在库

    DISCRETE(分立元件)中 开关: 其中可供选择的这几个比较好 SW PUSHBUTTON SW PUSHBUTTON-DPST 数码管: LDD(开头) LTD(开头) 版权声明:本文为博主原创 ...

  7. ELK搭建过程中出现的问题与解决方法汇总

    搭建过程中出现的问题 elasticsearch启动过程中报错[1] ERROR: [1] bootstrap checks failed [1]: the default discovery set ...

  8. 洛谷 P2335 SDOI 2005 毒瘤 位图(也补上注释了)

    #include<iostream> #include<cstdio> #include<queue> #include<cstring> using ...

  9. noip模拟赛 残

    分析:这道题有点丧病啊......斐波那契数列本来增长就快,n <= 10^100又套2层,看到题目就让人绝望.不过这种题目还是有套路的.首先求斐波那契数列肯定要用到矩阵快速幂,外层的f可以通过 ...

  10. noip模拟赛 无题

    分析:这道题和以前做过的模拟赛题很像:传送门. 对于前30%的数据可以直接暴力求,k=1的数据利用线段树求区间最大值,没有修改操作可以用主席树.100%的数据主席树是肯定用不了的,观察到K非常小,可以 ...