void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){
if(!b){d=a;x=1LL;y=0LL;}
else {ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}
}
/////大数乘法取模转换成加法取模,避免爆long long
ll mult(ll a,ll k,ll m){
ll res=;
while(k){
if(k&1LL)res=(res+a)%m;
k>>=;
a=(a<<)%m;
}
return res;
}
///// 这段在正常的中国剩余定理中可以去掉
ll china(int n,ll *a,ll *m){
ll M=,d,y,x=;
for(int i=;i<n;i++)M*=m[i];
for(int i=;i<n;i++){
ll w=M/m[i];
ex_gcd(m[i],w,d,d,y);
x=(x+mult(y,mult(w,a[i],M),M))%M;
}
return (x+M)%M;
}

中国剩余定理模板&俄罗斯乘法的更多相关文章

  1. 中国剩余定理模板 51nod 1079

    题目链接:传送门 推荐博客:https://www.cnblogs.com/freinds/p/6388992.html (证明很好,代码有误). 1079 中国剩余定理  基准时间限制:1 秒 空间 ...

  2. Monkey Tradition---LightOj1319(中国剩余定理模板)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1319 题意:有 n 个猴子,n 棵树,树的高度为 L ,每个猴子刚开始的时候都在树的底 ...

  3. poj 1006中国剩余定理模板

    中国剩余定理(CRT)的表述如下 设正整数两两互素,则同余方程组 有整数解.并且在模下的解是唯一的,解为 其中,而为模的逆元. 模板: int crt(int a[],int m[],int n) { ...

  4. poj 1006 Biorhythms (中国剩余定理模板)

    http://poj.org/problem?id=1006 题目大意: 人生来就有三个生理周期,分别为体力.感情和智力周期,它们的周期长度为23天.28天和33天.每一个周期中有一天是高峰.在高峰这 ...

  5. 51nod 1079 中国剩余定理模板

    中国剩余定理就是同余方程组除数为质数的特殊情况 我直接用同余方程组解了. 记得exgcd后x要更新 还有先更新b1再更新m1,顺序不能错!!(不然会影响到b1的更新) #include<cstd ...

  6. [洛谷P1495] 曹冲养猪 (中国剩余定理模板)

    中国剩余定理(朴素的)用来解线性同余方程组: x≡a[1] (mod m[1]) x≡a[2] (mod m[2]) ...... x≡a[n] (mod m[n]) 定义ms=m[1]*m[2]*. ...

  7. 中国剩余定理模板poj1006

    #include <cstdio> #include <iostream> #include <cstring> #include <cmath> #i ...

  8. [Luogu P4777] 【模板】扩展中国剩余定理(EXCRT) (扩展中国剩余定理)

    题面 传送门:洛咕 Solution 真*扩展中国剩余定理模板题.我怎么老是在做模板题啊 但是这题与之前不同的是不得不写龟速乘了. 还有两个重点 我们在求LCM的时候,记得先/gcd再去乘另外那个数, ...

  9. 51nod1079(中国剩余定理)

    题目链接: http://www.51nod.com/onlineJudge/user.html#!userId=21687 题意: 中文题诶~ 思路: 本题就是个中国剩余定理模板题,不过模拟也可以过 ...

随机推荐

  1. iOS sandbox

    iOS的沙盒机制,应用只能访问自己应用目录下的文件.iOS不像android,没有SD卡概念,不能直接访问图像.视频等内容.iOS应用产生的内容,如图像.文件.缓存内容等都必须存储在自己的沙盒内.默认 ...

  2. P5304 [GXOI/GZOI2019]旅行者(最短路/乱搞)

    luogu bzoj Orz自己想出神仙正解的sxy 描述略 直接把所有起点推进去跑dijkstra... 并且染色,就是记录到这个点的最短路是由哪个起点引导出来的 然后再把所有边反指跑一次... 之 ...

  3. [LUOGU] P2251 质量检测

    题目背景 无 题目描述 为了检测生产流水线上总共N件产品的质量,我们首先给每一件产品打一个分数A表示其品质,然后统计前M件产品中质量最差的产品的分值Q[m] = min{A1, A2, ... Am} ...

  4. 自媒体人Chrome浏览器必备插件精选神器!

    自从互联网时代起,浏览器使用从最早的IE,到opera,到猎豹浏览器,到360双核浏览器,到火狐,到safari,到目前最喜欢用的chrome.一路下来,chrome的稳定性与扩展性征服了我,成了我必 ...

  5. CUDA_one

    首先我看了讲解CUDA基础部分以后,大致对CUDA的基本了解如下: 第一:CUDA实行并行化的过程分为两部分,一个是线程块之间的并行(这是在每个线程网格中grid进行的),一个是对于每一个线程块内部各 ...

  6. Github ==〉本地(克隆)

    [情景] 新员工入职后,一般会将项目下载到本地. [下载(克隆)] 命令 git clone url地址 示例

  7. Webdriver测试脚本1(打开网页并打印标题)

    案例: 启动火狐浏览器 首页打开博客园页面,打印网页标题,等待3秒 打开百度首页,打印网页标题,再等待2秒 关闭浏览器 from selenium import webdriver from time ...

  8. C语言学习<输入输出函数,函数的调用>

    #include <stdio.h> /* 输入输出函数的学习 函数的调用 2017.05.25 soulsjie */ //输入连个数字求最大值 void main(){ int Max ...

  9. 在win10配置环境变量

    从win7升级成win10后找不到在哪配置环境变量...手动再见ヾ( ̄▽ ̄)Bye~,废话不多说,下面开始图文模式: 1)打开文件资源管理器,点左上角的"计算机"

  10. [luoguP1011] 车站(递推)

    传送门 蒟蒻我关系式没有找出来. 直接模拟递推过程好了. 代码 #include <cstdio> #define N 21 int a, n, m, x, y; int up[N][2] ...