对于带修改的区间求和能做到O(n log n)预处理,O(log n)查询;而不带修改的可以做到O(n)预处理,O(1)查询。那么不带修改的区间最值能做到O(1)查询吗?

区间最值有这样一个性质:对于一段区间的两个子区间,如果它们覆盖了整个区间(可以有重叠部分),那么这两段区间各自的最大(或最小)值的最大(或最小)值就等于整个区间的最大(或最小)值。

这样的话,可以倍增地求出从每个位置开始的2的x次方的区间最值,预处理每个数的log。查询l-r这一段区间时按如图所示的方式合并就行了。

#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#define maxn 100010
using namespace std;
int read()
{
int f=1,x=0;char ch=getchar();
while(isdigit(ch)==0 && ch!='-')ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return x*f;
}
void write(int x)
{
int ff=0;char ch[15];
if(x<0)
{
x=-x;
putchar('-');
}
while(x)ch[++ff]=(x%10)+'0',x/=10;
if(ff==0)putchar('0');
while(ff)putchar(ch[ff--]);
putchar('\n');
}
struct ST
{
int st[maxn][20],logx[maxn],two[maxn];
int n,q,l,r;
void ask()
{
l=read(),r=read();
write(max(st[l][logx[r-l+1]],st[r-two[r-l+1]+1][logx[r-l+1]]));
}
void work()
{
n=read(),q=read();
for(int i=1,j=1,k=0;i<=n;i++)
{
st[i][0]=read();
if((j<<1)<=i)j<<=1,k++;
logx[i]=k;
two[i]=j;
}
for(int i=1;(1<<i)<=n;i++)
{
for(int j=1;j+(1<<(i))-1<=n;j++)
{
st[j][i]=max(st[j][i-1],st[j+(1<<(i-1))][i-1]);
// cout<<st[j][i]<<" ";
}//cout<<endl;
}
while(q--)
{
ask();
}
}//1 2 3 4 5
}t;
int main()
{
t.work();
return 0;
}/*
8 8
9 3 1 7 5 6 0 8
1 6
1 5
2 7
2 6
1 8
4 8
3 7
1 8
*/

  

并不对劲的st表的更多相关文章

  1. POJ3693 Maximum repetition substring [后缀数组 ST表]

    Maximum repetition substring Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9458   Acc ...

  2. 【BZOJ-2006】超级钢琴 ST表 + 堆 (一类经典问题)

    2006: [NOI2010]超级钢琴 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2473  Solved: 1211[Submit][Statu ...

  3. 【BZOJ-3956】Count ST表 + 单调栈

    3956: Count Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 173  Solved: 99[Submit][Status][Discuss] ...

  4. 【BZOJ-4569】萌萌哒 ST表 + 并查集

    4569: [Scoi2016]萌萌哒 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 459  Solved: 209[Submit][Status] ...

  5. 【BZOJ-4310】跳蚤 后缀数组 + ST表 + 二分

    4310: 跳蚤 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 180  Solved: 83[Submit][Status][Discuss] De ...

  6. HDU5726 GCD(二分 + ST表)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5726 Description Give you a sequence of N(N≤100, ...

  7. Hdu 5289-Assignment 贪心,ST表

    题目: http://acm.hdu.edu.cn/showproblem.php?pid=5289 Assignment Time Limit: 4000/2000 MS (Java/Others) ...

  8. Bzoj 2006: [NOI2010]超级钢琴 堆,ST表

    2006: [NOI2010]超级钢琴 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2222  Solved: 1082[Submit][Statu ...

  9. ST表poj3264

      /* ST表多次查询区间最小值 设 g[j][i] 表示从第 i 个数到第 i + 2 ^ j - 1 个数之间的最小值 类似DP的说 ans[i][j]=min (ans[i][mid],ans ...

随机推荐

  1. 常见的Redis问题?

    Redis的那些最常见面试问题[转] 1.什么是redis? Redis 是一个基于内存的高性能key-value数据库. 2.Reids的特点 Redis本质上是一个Key-Value类型的内存数据 ...

  2. Nginx的初识

    今日刚接触了解到Nginx的反向代理,正向代理,并发,集群,同个站点不同域名的解析访问等等. 1.反向代理:Nginx充当一个桥接的作用,对用户和服务端进行链接,进行服务端的代理,这样有什么好处: a ...

  3. hihocoder 1515 分数调查(树形dp)

    hihocoder 1515 分数调查 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi的学校总共有N名学生,编号1-N.学校刚刚进行了一场全校的古诗文水平测验. ...

  4. Windows和Linux启动虚拟环境

    快速跳转到Linux操作 Windows启动虚拟环境 <!--tab回车可以补全--> 安装virtualenv pip install virtualenv 创建虚拟环境 方法一: py ...

  5. IE & table & border & border-collapse & bug

    shit IE table border bug & border-collapse bug > `border-collapse: collapse;` table { width: ...

  6. Spring Data JPA 之 一对一,一对多,多对多 关系映射

    一.@OneToOne关系映射 JPA使用@OneToOne来标注一对一的关系. 实体 People :用户. 实体 Address:家庭住址. People 和 Address 是一对一的关系. 这 ...

  7. codevs1792 分解质因数

    题目描述 Description 编写一个把整数N分解为质因数乘积的程序. 输入描述 Input Description 输入一个整数 N 输出描述 Output Description 输出 分解质 ...

  8. MySQL使用教程收集(语法教程/命令教程)

    说明:现在市面上的教程除了基本语法外,都基本是五花八门的,最权威且最全面的解释应该上官网去查看. https://www.tutorialspoint.com/mysql/index.htm http ...

  9. 信息收集工具recon-ng详细使用教程

    前言: 最近在找Recon-ng详细一点的教程,可是Google才发现资料都很零散而且不详细,所以我打算具体写一下.Recon-ng在渗透过程中主要扮演信息收集工作的角色,同时也可以当作渗透工具,不过 ...

  10. JAVA OO之 类、对象、包

    类 类是具有相同属性和行为的一组对象的集合. public class HomeWork1 { public static void main(String[] args) { MyPhone mp= ...