Tensorflow学习笔记——张量、图、常量、变量(一)
1 张量和图
variable)的终点。边表示结点之间的输入/输出关系。这些数据边可以传送维度可动态调整的多维数据数组,即张量(tensor)。
a = tf.constant(2, tf.int16)
b = tf.constant(4, tf.float32)
graph = tf.Graph()
with graph.as_default():
a = tf.Variable(8, tf.float32)
b = tf.Variable(tf.zeros([2,2], tf.float32))
with tf.Session(graph=graph) as session:
tf.global_variables_initializer().run()
print(f)
print(session.run(a))
print(session.run(b))
#输出:
>>> <tf.Variable 'Variable_2:0' shape=() dtype=int32_ref>
>>> 8
>>> [[ 0. 0.]
>>> [ 0. 0.]]
在 Tensorflow 中,所有不同的变量和运算都是储存在计算图。所以在我们构建完模型所需要的图之后,还需要打开一个会话(Session)来运行整个计算图。在会话中,我们可以将所有计算分配到可用的 CPU 和 GPU 资源中。
如下所示代码,我们声明两个常量 a 和 b,并且定义一个加法运算。但它并不会输出计算结果,因为我们只是定义了一张图,而没有运行它:
- a=tf.constant([1,2],name="a")
- b=tf.constant([2,4],name="b")
- result = a+b
- print(result)
#输出:Tensor("add:0", shape=(2,), dtype=int32)
下面的代码才会输出计算结果,因为我们需要创建一个会话才能管理 TensorFlow 运行时的所有资源。但计算完毕后需要关闭会话来帮助系统回收资源,不然就会出现资源泄漏的问题。下面提供了使用会话的两种方式:
a=tf.constant([1,2,3,4])
b=tf.constant([1,2,3,4])
result=a+b
sess=tf.Session()
print(sess.run(result))
sess.close
#输出 [2 4 6 8]
with tf.Session() as sess:
a=tf.constant([1,2,3,4])
b=tf.constant([1,2,3,4])
result=a+b
print(sess.run(result))
#输出 [2 4 6 8]
2
常量和变量
中最基本的单位是常量(Constant)、变量(Variable)和占位符(Placeholder)。常量定义后值和维度不可变,变量定义后值可变而维度不可变。在神经网络中,变量一般可作为储存权重和其他信息的矩阵,而常量可作为储存超参数或其他结构信息的变量。下面我们分别定义了常量与变量:
a = tf.constant(2, tf.int16)
b = tf.constant(4, tf.float32)
c = tf.constant(8, tf.float32)
d = tf.Variable(2, tf.int16)
e = tf.Variable(4, tf.float32)
f = tf.Variable(8, tf.float32)
g = tf.constant(np.zeros(shape=(2,2), dtype=np.float32))
h = tf.zeros([11], tf.int16)
i = tf.ones([2,2], tf.float32)
j = tf.zeros([1000,4,3], tf.float64)
k = tf.Variable(tf.zeros([2,2], tf.float32))
l = tf.Variable(tf.zeros([5,6,5], tf.float32))
在上面代码中,我们分别声明了不同的常量(tf.constant())和变量(tf.Variable()),其中tf.float 和tf.int tftf分别声明了不同的浮点型和整数型数据。而
tf.ones() 和 tf.zeros() 分别产生全是 1、全是 0 的矩阵。我们注意到常量 g,它的声明结合了 TensorFlow 和 Numpy,这也是可执行的。
w1=tf.Variable(tf.random_normal([2,3],stddev=1,seed=1))
以上语句声明一个2 行 3 列的变量矩阵,该变量的值服从标准差为 1 的正态分布,并随机生成。
weights = tf.Variable(tf.truncated_normal([256 * 256, 10]))
biases = tf.Variable(tf.zeros([10]))
print(weights.get_shape().as_list())
print(biases.get_shape().as_list())
#输出
>>>[65536, 10]
>>>[10]
Tensorflow学习笔记——张量、图、常量、变量(一)的更多相关文章
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...
- tensorflow学习笔记二:入门基础 好教程 可用
http://www.cnblogs.com/denny402/p/5852083.html tensorflow学习笔记二:入门基础 TensorFlow用张量这种数据结构来表示所有的数据.用一 ...
- tensorflow学习笔记(1)-基本语法和前向传播
tensorflow学习笔记(1) (1)tf中的图 图中就是一个计算图,一个计算过程. 图中的constant是个常量 计 ...
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)
续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...
- TensorFlow学习笔记10-卷积网络
卷积网络 卷积神经网络(Convolutional Neural Network,CNN)专门处理具有类似网格结构的数据的神经网络.如: 时间序列数据(在时间轴上有规律地采样形成的一维网格): 图像数 ...
- TensorFlow学习笔记2-性能分析工具
TensorFlow学习笔记2-性能分析工具 性能分析工具 在spyder中运行以下代码: import tensorflow as tf from tensorflow.python.client ...
- TensorFlow学习笔记(一)
[TensorFlow API](https://www.tensorflow.org/versions/r0.12/how_tos/variable_scope/index.html) Tensor ...
- Tensorflow学习笔记2:About Session, Graph, Operation and Tensor
简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节 ...
- Tensorflow学习笔记2019.01.03
tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S ...
随机推荐
- Centos6.8 安装mongo3.6以及权限配置和开启外网链接
目录 安装环境和版本说明,以及参考文档链接 安装MongoDB数据库 运行MongoDB数据库 删除卸载MongoDB 配置MongoDB管理员用户 修改配置文件,允许外网链接 安装配置完成,使用Ro ...
- http主要请求头
一.内容协商 1.Accept:希望服务器返回的数据格式,如下面的:text/javascript, application/javascript, application/ecmascript, a ...
- python爬虫入门01:教你在 Chrome 浏览器轻松抓包
通过 python爬虫入门:什么是爬虫,怎么玩爬虫? 我们知道了什么是爬虫 也知道了爬虫的具体流程 那么在我们要对某个网站进行爬取的时候 要对其数据进行分析 就要知道应该怎么请求 就要知道获取的数据是 ...
- NioEventLoopGroup中的nThreads和executor
NioEventLoopGroup只传入nThreads即可,创建nThreads个NioEventLoop,boss为NioEventLoop注册建立的channel时,使用默认的ThreadPer ...
- PS学习笔记(05)
PS学习笔记(09) [2]马赛克背景 找一张图片.然后新建图层,让前景色背景色恢复到默认的状态(黑.白) 在新建图层上填充黑色-->滤镜-->渲染->云彩 像素化-->马赛克 ...
- Webdriver测试脚本2(控制浏览器)
Webdriver提供了操作浏览器的一些方法,例如控制浏览器的大小.操作浏览器前进和后退等. 控制浏览器窗口大小 有时候我们希望能以某种浏览器尺寸打开,让访问的页面在这种尺寸下运行.例如可以将浏览器设 ...
- xtu summer individual 6 D - Checkposts
Checkposts Time Limit: 2000ms Memory Limit: 262144KB This problem will be judged on CodeForces. Orig ...
- Codeforces Round #372 (Div. 2) A .Crazy Computer/B. Complete the Word
Codeforces Round #372 (Div. 2) 不知不觉自己怎么变的这么水了,几百年前做A.B的水平,现在依旧停留在A.B水平.甚至B题还不会做.难道是带着一种功利性的态度患得患失?总共 ...
- 2016 Multi-University Training Contest 3-1011.Teacher Bo,暴力!
Teacher Bo Time Limit: 4000/2000 MS (Java/Ot ...
- Linux下查看硬盘UUID和修改硬盘UUID(转)
查看硬盘UUID: 1. ls -l /dev/disk/by-uuid 2. blkid /dev/sda5 修改硬盘UUID: 1.新建和改变分区的UUID sudo uuidgen | xarg ...