【题解】

  二重循环枚举起始列和终止列,竖着往下加,转化为一个最大子段和问题,逐行累加即可。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
#define N 1000
#define rg register
using namespace std;
int n,m,x;
LL ans,sum[N][N];
inline int read(){
int k=,f=; char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(''<=c&&c<='')k=k*+c-'',c=getchar();
return k*f;
}
int main(){
m=read(); n=read();
for(rg int i=;i<=n;i++)
for(rg int j=;j<=m;j++) x=read(),sum[i][j]=sum[i][j-]+x;
for(rg int i=;i<=m;i++)
for(rg int j=i;j<=m;j++){
LL tmp=;
for(rg int k=;k<=n;k++){
tmp+=sum[k][j]-sum[k][i-];
if(tmp<) tmp=;
else ans=max(ans,tmp);
}
}
printf("%lld\n",ans);
return ;
}

【模板】51nod 1051 最大子矩阵和的更多相关文章

  1. 51nod 1051 最大子矩阵和(dp)

    题目链接:51nod 1051 最大子矩阵和 实质是把最大子段和扩展到二维.读题注意m,n... #include<cstdio> #include<cstring> #inc ...

  2. 51nod 1051 最大子矩阵和

    没想到居然可以O(n3)暴力过 就是大概之前的  最大连续子序列和 加成2维度了  枚举起始列 和 终止列 然后计算从1到n行最大的子矩阵的和 注意n 和 m 的输入顺序!! #include< ...

  3. 51nod 1051 最大子矩阵和 【最大子段和DP变形/降维】

    [题目]: 一个M*N的矩阵,找到此矩阵的一个子矩阵,并且这个子矩阵的元素的和是最大的,输出这个最大的值. 例如:*3的矩阵: - - - - 和最大的子矩阵是: - - Input 第1行:M和N, ...

  4. 51nod 1051 最大子矩阵和(DP)

    题意 略 分析 一道经典的DP题,但是我弱到差点做不出来,真的垃圾 设置\(sum(i,j)代表1-i行第j列的前缀和\),然后枚举行i和行j,再枚举列k,做一遍类似一维的最大子段和即可 #inclu ...

  5. 51nod 1051 求最大子矩阵和

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1051 1051 最大子矩阵和 基准时间限制:2 秒 空间限制: ...

  6. 最大子矩阵和 51Nod 1051 模板题

    一个M*N的矩阵,找到此矩阵的一个子矩阵,并且这个子矩阵的元素的和是最大的,输出这个最大的值. 例如:3*3的矩阵:   -1 3 -1 2 -1 3 -3 1 2   和最大的子矩阵是:   3 - ...

  7. 中国剩余定理模板 51nod 1079

    题目链接:传送门 推荐博客:https://www.cnblogs.com/freinds/p/6388992.html (证明很好,代码有误). 1079 中国剩余定理  基准时间限制:1 秒 空间 ...

  8. 快速幂取模模板 && 51nod 1013 3的幂的和

    #include <iostream> #include <cstdio> #include <cmath> #include <vector> #in ...

  9. 51nod 1051

    * 最大子矩阵 * sum[i][j] 表示第 i 行前 j 列的和,即每一行的前缀 * i,j 指针枚举列,k指针枚举行 * Now 记录当前枚举的子矩阵的价值 * 由于记录了前缀信息,一旦 Now ...

随机推荐

  1. 51Nod 1522 上下序列 —— 区间DP

    题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1522 区间DP,从大往小加: 新加入一种数有3种加法:全加左边,全 ...

  2. 洛谷P1297 单选错位——期望

    题目:https://www.luogu.org/problemnew/show/P1297 读懂题后就变得很简单啦: 对于一个问题和它的下一个问题,我们考虑: 设上一个问题有 a 个选项,下一个问题 ...

  3. bzoj 1615: [Usaco2008 Mar]The Loathesome Hay Baler麻烦的干草打包机【bfs】

    直接bfs即可,注意开double,还有驱动和终点的齿轮都在序列里,要把它们找出来= = #include<iostream> #include<cstdio> #includ ...

  4. 微服务下,使用ELK做日志收集及分析

    一.使用背景 目前项目中,采用的是微服务框架,对于日志,采用的是logback的配置,每个微服务的日志,都是通过File的方式存储在部署的机器上,但是由于日志比较分散,想要检查各个微服务是否有报错信息 ...

  5. IDEA 激活方式

    最新的IDEA激活方式 使用网上传统的那种输入网址的方式激活不了,使用http://idea.lanyus.com/这个网站提供的工具进行 1.进入hosts文件中:C:\Windows\System ...

  6. liunx 用户切换 su sudo

    liunx 用户操作#useradd test#passwd test 用户身份切换su 切换用户 需要知道切换用户的密码1.su [-lm] [-c命令] [username] #su -login ...

  7. 51nod1344 走格子

    1344 走格子 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题  收藏  关注 有编号1-n的n个格子,机器人从1号格子顺序向后走,一直走到n号格子,并需要从n号格 ...

  8. C - GCD LCM

    Description The GCD of two positive integers is the largest integer that divides both the integers w ...

  9. Java 8 (5) Stream 流 - 收集数据

    在前面已经使用过collect终端操作了,主要是用来把Stream中的所有元素结合成一个List,在本章中,你会发现collect是一个归约操作,就像reduce一样可以接受各种做法作为参数,将流中的 ...

  10. C#知识点-反射

    一.开发环境 操作系统:Win7 编译器:VS2010 .net版本:.net4.0 二.项目结构 三.开发流程 0.编写实体类 namespace ReflectDemo { public clas ...