KNN作业要求:

1、掌握KNN算法原理

2、实现具体K值的KNN算法

3、实现对K值的交叉验证

1、KNN原理见上一小节

2、实现KNN

  过程分两步:

    1、计算测试集与训练集的距离

    2、通过比较label出现比例的方式,确定选取的最终label

  代码分析:

  cell1 - cell5 对数据的预处理

  cell6创建KNN类,初始化类的变量,此处是传递测试数据和训练数据

  cell7实现包含两个循环的KNN算法:

    通过计算单一的向量与矩阵之间的距离(在之前的cell中,已经将图像转换成列:32*32 的图像转换为 1*3072,,

    测试集是500张:500*3072,训练集是5000张:5000*3072)

  代码基础:使用python 2.7.9 + numpy 1.11.0

  技巧:使用help 查看相关函数的用法,或者google

    举例:np.square

          

      q 键退出help      

      

      可知,np.square() 为了加快运算速度,是用c写的,在这里查不到具体用法。google查看:

      

        例子为计算数组[-1j,1]里边各元素的平方,得到的结果为[-1,1]

  代码:实现compute_distances_two_loops(self, X)

 1   def compute_distances_two_loops(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using a nested loop over both the training data and the
test data. Inputs:
- X: A numpy array of shape (num_test, D) containing test data. Returns:
- dists: A numpy array of shape (num_test, num_train) where dists[i, j]
is the Euclidean distance between the ith test point and the jth training
point.
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in xrange(num_test):
for j in xrange(num_train):
#####################################################################
# TODO: #
# Compute the l2 distance between the ith test point and the jth #
# training point, and store the result in dists[i, j]. You should #
# not use a loop over dimension. #
#####################################################################
dists[i,j] = np.sqrt(np.sum(np.square(X[i,:]-self.X_train[j,:])))
#####################################################################
# END OF YOUR CODE #
#####################################################################
return dists

    实现对一张测试图像对应的矩阵与一张训练集图像的矩阵做L2距离。

    也可以用numpy.linalg.norm函数实现:

      此函数执行的公式:

      所以核心代码可以写作:

        dists[i,j] = np.linalg.norm(self.X_train[j,:]-X[i,:])

  cell8 得到的距离可视化,白色表示较大的距离值,黑色是较小距离值

  cell9 实现K=1的label预测

  代码:实现 classifier.predict_labels()

   def predict_labels(self, dists, k=1):
"""
Given a matrix of distances between test points and training points,
predict a label for each test point. Inputs:
- dists: A numpy array of shape (num_test, num_train) where dists[i, j]
gives the distance betwen the ith test point and the jth training point. Returns:
- y: A numpy array of shape (num_test,) containing predicted labels for the
test data, where y[i] is the predicted label for the test point X[i].
"""
num_test = dists.shape[0]
y_pred = np.zeros(num_test)
for i in xrange(num_test):
# A list of length k storing the labels of the k nearest neighbors to
# the ith test point.
closest_y = []
count = []
#########################################################################
# TODO: #
# Use the distance matrix to find the k nearest neighbors of the ith #
# testing point, and use self.y_train to find the labels of these #
# neighbors. Store these labels in closest_y. #
# Hint: Look up the function numpy.argsort. #
#########################################################################
buf_labels = self.y_train[np.argsort(dists[i,:])]
closest_y = buf_labels[0:k]
#########################################################################
# TODO: #
# Now that you have found the labels of the k nearest neighbors, you #
# need to find the most common label in the list closest_y of labels. #
# Store this label in y_pred[i]. Break ties by choosing the smaller #
# label. #
#########################################################################
#for j in closest_y :
# count.append(closest_y.count(j))
#m = max(count)
#n = count.index(m)
#y_pred[i] = closest_y[n]
c = Counter(closest_y)
y_pred[i] = c.most_common(1)[0][0]
#########################################################################
# END OF YOUR CODE #
######################################################################### return y_pred

        步骤:

          1.使用numpy.argsort对所以距离进行排序,得到排序后的索引。

          2.通过索引找到对应的label

          3.通过collection包的Counter,对label进行统计表示

          4.通过counter的Most common方法得到出现最多的label

  cell9 在计算完成后,同时实现了准确率的计算

  cell10 实现K =5的KNN

  cell11 实现compute_distances_one_loop(X_test)

  代码:

   def compute_distances_one_loop(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using a single loop over the test data. Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in xrange(num_test):
#######################################################################
# TODO: #
# Compute the l2 distance between the ith test point and all training #
# points, and store the result in dists[i, :]. #
#######################################################################
buf = np.square(self.X_train-X[i,:])
dists[i,:] = np.sqrt(np.sum(buf,axis=1))
#######################################################################
# END OF YOUR CODE #
#######################################################################
return dists

  并通过计算一个循环与两个循环分别得到的结果的差值平方,来衡量准确性。

  cell12 实现完全的数组操作,不使用循环。

   def compute_distances_no_loops(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using no explicit loops. Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
#########################################################################
# TODO: #
# Compute the l2 distance between all test points and all training #
# points without using any explicit loops, and store the result in #
# dists. #
# #
# You should implement this function using only basic array operations; #
# in particular you should not use functions from scipy. #
# #
# HINT: Try to formulate the l2 distance using matrix multiplication #
# and two broadcast sums. #
#########################################################################
#buf = np.tile(X,(1,num_train))
buf = np.dot(X, self.X_train.T)
buf_test = np.square(X).sum(axis = 1)
buf_train = np.square(self.X_train).sum(axis = 1)
dists = np.sqrt(-2*buf+buf_train+np.matrix(buf_test).T)
#########################################################################
# END OF YOUR CODE #
#########################################################################
return dists

  使用(a-b)2=a2+b2-2ab 的公式

  27行: 此时buf_test 为500*1数组  buf_train为5000*1的数组  需要得到500*5000的数组  此处通过构造矩阵的方式进行broadcast

  cell13 比较3种方案的执行效率

  cell14 交叉验证

  交叉验证的思想在上一节有解释过了

  代码:(其中带有注释)

 num_folds = 5
k_choices = [1, 3, 5, 8, 10, 12, 15, 20, 50, 100] X_train_folds = []
y_train_folds = []
################################################################################
# TODO: #
# Split up the training data into folds. After splitting, X_train_folds and #
# y_train_folds should each be lists of length num_folds, where #
# y_train_folds[i] is the label vector for the points in X_train_folds[i]. #
# Hint: Look up the numpy array_split function. #
################################################################################
X_train_folds = np.array_split(X_train, num_folds)
y_train_folds = np.array_split(y_train, num_folds)
################################################################################
# END OF YOUR CODE #
################################################################################ # A dictionary holding the accuracies for different values of k that we find
# when running cross-validation. After running cross-validation,
# k_to_accuracies[k] should be a list of length num_folds giving the different
# accuracy values that we found when using that value of k.
k_to_accuracies = {} ################################################################################
# TODO: #
# Perform k-fold cross validation to find the best value of k. For each #
# possible value of k, run the k-nearest-neighbor algorithm num_folds times, #
# where in each case you use all but one of the folds as training data and the #
# last fold as a validation set. Store the accuracies for all fold and all #
# values of k in the k_to_accuracies dictionary. #
################################################################################
for k in k_choices:
k_to_accuracies[k] = [] for k in k_choices:
print 'evaluating k=%d' % k
for j in range(num_folds):
#get validation
X_train_cv = np.vstack(X_train_folds[0:j]+X_train_folds[j+1:])
X_test_cv = X_train_folds[j]
y_train_cv = np.hstack(y_train_folds[0:j]+y_train_folds[j+1:])
y_test_cv = y_train_folds[j]
#train
classifier.train(X_train_cv, y_train_cv)
dists_cv = classifier.compute_distances_no_loops(X_test_cv)
#get accuracy
y_test_pred = classifier.predict_labels(dists_cv, k)
num_correct = np.sum(y_test_pred == y_test_cv)
accuracy = float(num_correct) / num_test
#add j th accuracy of k to array
k_to_accuracies[k].append(accuracy)
################################################################################
# END OF YOUR CODE #
################################################################################ # Print out the computed accuracies
for k in sorted(k_to_accuracies):
for accuracy in k_to_accuracies[k]:
print 'k = %d, accuracy = %f' % (k, accuracy)

  cell15 显示k值对应的准确率

  上述包含了均值和标准差

  cell16 使用最优值,得到较好的准确率

总结:

  整体来说,第一个作业难度较大,主要难度不是在算法部分,而是在熟悉python相关函数与相应的用法方面。对于python大神而言,难度低。

  但是经过扎实的第一次作业后,后边的作业相对简单了。之后的作业细节方面讲解的少些。

附:通关CS231n企鹅群:578975100 validation:DL-CS231n

CS231n 2016 通关 第二章-KNN 作业分析的更多相关文章

  1. CS231n 2016 通关 第二章-KNN

      课程内容全纪录: 1.讲解图像分类的难点 1.光照强度 2.主体变形 3.主体与背景咬合 4.主体与背景相接近 5.同类别间存在区别 2.KNN 1.最近邻算法 2.Knn 3.hyperpara ...

  2. CS231n 2016 通关 第一章-内容介绍

    第一节视频的主要内容: Fei-Fei Li 女神对Computer Vision的整体介绍.包括了发展历史中的重要事件,其中最为重要的是1959年测试猫视觉神经的实验. In 1959 Harvar ...

  3. CS231n 2016 通关 第三章-SVM与Softmax

    1===本节课对应视频内容的第三讲,对应PPT是Lecture3 2===本节课的收获 ===熟悉SVM及其多分类问题 ===熟悉softmax分类问题 ===了解优化思想 由上节课即KNN的分析步骤 ...

  4. CS231n 2016 通关 第三章-SVM 作业分析

    作业内容,完成作业便可熟悉如下内容: cell 1  设置绘图默认参数 # Run some setup code for this notebook. import random import nu ...

  5. CS231n 2016 通关 第三章-Softmax 作业

    在完成SVM作业的基础上,Softmax的作业相对比较轻松. 完成本作业需要熟悉与掌握的知识: cell 1 设置绘图默认参数 mport random import numpy as np from ...

  6. CS231n 2016 通关 第五、六章 Dropout 作业

    Dropout的作用: cell  1 - cell 2 依旧 cell 3 Dropout层的前向传播 核心代码: train 时: if mode == 'train': ############ ...

  7. CS231n 2016 通关 第五、六章 Batch Normalization 作业

    BN层在实际中应用广泛. 上一次总结了使得训练变得简单的方法,比如SGD+momentum RMSProp Adam,BN是另外的方法. cell 1 依旧是初始化设置 cell 2 读取cifar- ...

  8. CS231n 2016 通关 第五、六章 Fully-Connected Neural Nets 作业

    要求:实现任意层数的NN. 每一层结构包含: 1.前向传播和反向传播函数:2.每一层计算的相关数值 cell 1 依旧是显示的初始设置 # As usual, a bit of setup impor ...

  9. CS231n 2016 通关 第四章-NN 作业

    cell 1 显示设置初始化 # A bit of setup import numpy as np import matplotlib.pyplot as plt from cs231n.class ...

随机推荐

  1. Elasticsearch shield权限管理详解

    Elasticsearch shield权限管理详解 学习了:https://blog.csdn.net/napoay/article/details/52201558 现在(20180424)改名为 ...

  2. ZT:CSS实现水平|垂直居中漫谈

    有篇博客园网友‘云轩奕鹤’的文章不错,转载在这里以供需要时查阅. http://www.cnblogs.com/jadeboy/p/5107471.html

  3. 我理解的ios和android

    近期着手了几个android和ios的项目,如今说下我的几个对他们的理解 从设计上来讲.我觉得android 它更像是个网页,一个页面跳到另外一个页面,两者之间的关联不是非常大,仅仅能传递一些简单的參 ...

  4. IOS UIPickView+sqlite 选择中国全部城市案例

    1.案例简单介绍 通过读取文件.将中国全部城市写入sqlite数据库中,现通过UIPickView实现中国全部城市的选择,效果图例如以下所看到的 2.城市对象模型 中国全部城市数据请看http://b ...

  5. 三联动 支持ie6,ie7 省,市,区

    三联动 支持ie6,ie7 省,市,区 <html xmlns="http://www.w3.org/1999/xhtml"> <head> <tit ...

  6. Linux的SOCKET编程详解(转)

    Linux的SOCKET编程详解 1. 网络中进程之间如何通信 进 程通信的概念最初来源于单机系统.由于每个进程都在自己的地址范围内运行,为保证两个相互通信的进 程之间既互不干扰又协调一致工作,操作系 ...

  7. 一场由股票提醒助手插件引发的血案——浅入浅出 jquery autocomplete

    我没有学过前端,所以这篇文章注定要班门弄斧了. 通常,须要用到什么技术什么语言时,我才去学,学了也不一定掌握,就是记不住!所以如今明确了.学习的时候,亦或是攻克难点的时候,一定要记录下来.并不一定非要 ...

  8. mysql (primary key)_(unique key)_(index) difference

    MYSQL  index  MYSQL索引用来快速地寻找那些具有特定值的记录,所有MySQL索引都以B-树的形式保存.如果没有索引,执行查询时MySQL必须从第一个记录开始扫描整个表的所有记录,直至找 ...

  9. SQL server 子查询 链接查询

    数据库 if while else 的使用 数据库运算符优先级

  10. 让Spring Boot启动更快

    关注公众号:锅外的大佬, 每日推送国外技术好文,帮助每位开发者更好成长 原文链接:https://dev.to/bufferings/lets-make-springboot-app-start-fa ...