Problem:

洛谷3546

Analysis:

I gave up and saw other's solution when I had nearly thought of the method ... What a pity

Let's define a border of string \(s\) as a prefix \(p\) of \(s\) that \(p\) is also a suffix of \(s\), and \(p\) is not longer than half of \(s\). What the problem asked us to look for is a number \(L\), that the prefix of length \(L\) can be divided into two string \(s1\) and \(s2\) , and the suffix of length \(L\) can be divided into two string \(s2\) and \(s1\), so that this pair of prefix and suffix is cyclically equivalent. Obviously, \(s1\) is a border of string \(s\). Another fact is, if \(s1\) is of length \(len\), \(s2\) is a border of the substring \([len, n - len - 1]\). Define \(f[len]\) as the length of the maximum border of the substring \([len, n - len - 1]\) . Let's enumerate the length of \(s1\) as \(len\) brutely, and for all legal \(len\) ("legal" means the prefix of length \(len\) is a border of \(s\). We can check it by hashing in \(O(1)\) time), the answer is \(len + f[len]\).

Now the problem is how to calculate \(f[len]\). Brute force takes \(O(n^2)\) complexity, but the useful fact below can decrease the complexity to \(O(n)\) :

\[f[i]\leq f[i+1]+2
\]

To make it easy, look at the (beautiful) picture below.

The first picture shows the situation when \(f[i]=f[i+1]+2\), and the second picture shows if \(f[i]\) (the black ones) is more than \(f[i+1]\) (the red ones) plus \(2\) , the \(f[i+1]\) must be wrong, for there's a longer border (the blue ones) of substring \([i+1, n-i-2]\).

Because of this fact, we can solve \(f[len]\) in \(O(n)\) time. We initialize \(f[i]\) as \(f[i+1]+2\), and decrease it until the substring \([i, n-i-1]\) has a border of length \(f[i]\). The proof of the complexity is similar to the one of solving \(height\) array by Suffix Array.

Code:

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cctype>
using namespace std; namespace zyt
{
template<typename T>
inline bool read(T &x)
{
char c;
bool f = false;
x = 0;
do
c = getchar();
while (c != EOF && c != '-' && !isdigit(c));
if (c == EOF)
return false;
if (c == '-')
f = true, c = getchar();
do
x = x * 10 + c - '0', c = getchar();
while (isdigit(c));
if (f)
x = -x;
return true;
}
inline bool read(char *const s)
{
return ~scanf("%s", s);
}
template<typename T>
inline void write(T x)
{
static char buf[20];
char *pos = buf;
if (x < 0)
putchar('-'), x = -x;
do
*pos++ = x % 10 + '0';
while (x /= 10);
while (pos > buf)
putchar(*--pos);
}
const int N = 1e6 + 10;
int f[N], n;
// f[i] is the maximum length of the border of substr[i, n - i - 1]
char str[N];
namespace Hash
{
typedef long long ll;
typedef pair<int, int> pii;
typedef pii hash_t;
hash_t h[N], pow[N];
const hash_t seed = hash_t(61, 67), p = hash_t(1e9 + 7, 1e9 + 9);
hash_t operator + (const hash_t &a, const hash_t &b)
{
return hash_t((a.first + b.first) % p.first, (a.second + b.second) % p.second);
}
hash_t operator - (const hash_t &a, const hash_t &b)
{
return hash_t((a.first - b.first + p.first) % p.first,
(a.second - b.second + p.second) % p.second);
}
hash_t operator * (const hash_t &a, const hash_t &b)
{
return hash_t(int((ll)a.first * b.first % p.first),
int((ll)a.second * b.second % p.second));
}
void init()
{
pow[0] = make_pair(1, 1);
for (int i = 1; i < N; i++)
pow[i] = pow[i - 1] * seed;
}
inline int ctoi(const char c)
{
return c - 'a';
}
void get(const char *const s)
{
h[0] = make_pair(ctoi(s[0]), ctoi(s[0]));
for (int i = 1; i < n; i++)
h[i] = h[i - 1] * seed + make_pair(ctoi(s[i]), ctoi(s[i]));
}
hash_t extract(const int l, const int r)
{
return l ? (h[r] - h[l - 1] * pow[r - l + 1]) : h[r];
}
}
using namespace Hash;
void mk_f()
{
f[n >> 1] = 0;
for (int i = (n >> 1) - 1; i >= 0; i--)
{
f[i] = min(f[i + 1] + 2, (n >> 1) - i);
while (f[i] && extract(i, i + f[i] - 1) != extract(n - i - f[i], n - i - 1))
--f[i];
}
}
int work()
{
read(n), read(str);
init();
get(str);
mk_f();
int ans = 0;
for (int i = 1; i <= (n >> 1); i++)
if (extract(0, i - 1) == extract(n - i, n - 1))
ans = max(ans, i + f[i]);
write(ans);
return 0;
}
}
int main()
{
return zyt::work();
}

【洛谷3546_BZOJ2803】[POI2012]PRE-Prefixuffix(String Hash)的更多相关文章

  1. 洛谷P3538 [POI2012]OKR-A Horrible Poem [字符串hash]

    题目传送门 A Horrible Poem 题目描述 Bytie boy has to learn a fragment of a certain poem by heart. The poem, f ...

  2. 洛谷P3237 米特运输 [HNOI2014] hash/二进制分解

    正解:hash/二进制分解 解题报告: 传送门! umm首先提取下题意趴QAQ 大概是说给一棵树,每个点有一个权值,要求修改一些点的权值,使得同一个父亲的儿子权值相同,且父亲的权值必须是所有儿子权值之 ...

  3. 洛谷P1117 优秀的拆分【Hash】【字符串】【二分】【好难不会】

    题目描述 如果一个字符串可以被拆分为AABBAABB的形式,其中 A和 B是任意非空字符串,则我们称该字符串的这种拆分是优秀的. 例如,对于字符串aabaabaaaabaabaa,如果令 A=aabA ...

  4. 洛谷 P3539 [POI2012]ROZ-Fibonacci Representation 解题报告

    P3539 [POI2012]ROZ-Fibonacci Representation 题意:给一个数,问最少可以用几个斐波那契数加加减减凑出来 多组数据10 数据范围1e17 第一次瞬间yy出做法, ...

  5. 洛谷P3533 [POI2012]RAN-Rendezvous

    P3533 [POI2012]RAN-Rendezvous 题目描述 Byteasar is a ranger who works in the Arrow Cave - a famous rende ...

  6. 洛谷P3531 [POI2012]LIT-Letters

    题目描述 Little Johnny has a very long surname. Yet he is not the only such person in his milieu. As it ...

  7. BZOJ2801/洛谷P3544 [POI2012]BEZ-Minimalist Security(题目性质发掘+图的遍历+解不等式组)

    题面戳这 化下题面给的式子: \(z_u+z_v=p_u+p_v-b_{u,v}\) 发现\(p_u+p_v-b_{u,v}\)是确定的,所以只要确定了一个点\(i\)的权值\(x_i\),和它在同一 ...

  8. 洛谷P3539 [POI2012] ROZ-Fibonacci Representation

    题目传送门 转载自:five20,转载请注明出处 本来看到这题,蒟蒻是真心没有把握的,还是five20大佬巨orz 首先由于斐波拉契数的前两项是1,1 ,所以易得对于任何整数必能写成多个斐波拉契数加减 ...

  9. 洛谷P3537 [POI2012]SZA-Cloakroom(背包)

    传送门 蠢了……还以为背包只能用来维护方案数呢……没想到背包这么神奇…… 我们用$dp[i]$表示当$c$的和为$i$时,所有的方案中使得最小的$b$最大时最小的$b$是多少 然后把所有的点按照$a$ ...

随机推荐

  1. 如何使用微信小程序video组件播放视频

    相信很多人都有在手机上看视频的习惯,比较看视频更真实更形象.那么我们在微信小程序中如何观看视频呢?这就需要video组件的帮忙了.今天我们就给大家演示一下,如何用微信小程序组件video播放视频.我们 ...

  2. python之cookbook-day01

    第一章:数据结构和算法 1.1 解压序列赋值给多个变量 >>> p = (4, 5) >>> x, y = p >>> x 4 >>& ...

  3. [bzoj3191][JLOI2013][卡牌游戏] (概率dp)

    Description   N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字 ...

  4. UVALive 6510 Stickers

    Stickers Time Limit: 3000ms Memory Limit: 131072KB This problem will be judged on UVALive. Original ...

  5. 53. spring boot系列合集【从零开始学Spring Boot】

    前40章节的spring boot系列已经打包成PDF在csdn进行发布了,如果有需要的可以进行下载. 下载地址:http://download.csdn.net/detail/linxinglian ...

  6. free web rich code eidtor

    free web rich code eidtor https://i.cnblogs.com/Preferences.aspx tiny code-editor https://apps.tiny. ...

  7. [K/3Cloud]DBServiceHelper.ExecuteDataSet(this.Context, sql)) 返回数据问题

    例如下面代码: int sQty = 0; string sql = string.Format(@" Select FMATERIALID ,FBASEUNITID ,FAUXPROPID ...

  8. codevs1099 字串变换

    题目描述 Description 已知有两个字串 A$, B$ 及一组字串变换的规则(至多6个规则): A1$ -> B1$ A2$ -> B2$ 规则的含义为:在 A$中的子串 A1$ ...

  9. Docker Command

    1. #docker inspect id           这个命令给出和容器相关的所有信息(https://www.imooc.com/video/15730) 2. #docker searc ...

  10. HDU——2824 The Euler function

    The Euler function Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...