洛谷 P 1164 小A点菜
题目背景
uim神犇拿到了uoi的ra(镭牌)后,立刻拉着基友小A到了一家……餐馆,很低端的那种。
uim指着墙上的价目表(太低级了没有菜单),说:“随便点”。
题目描述
不过uim由于买了一些辅(e)辅(ro)书,口袋里只剩M元(M<=10000)。
餐馆虽低端,但是菜品种类不少,有N种(N<=100),第i种卖ai元(ai<=1000)。由于是很低端的餐馆,所以每种菜只有一份。
小A奉行“不把钱吃光不罢休”,所以他点单一定刚好吧uim身上所有钱花完。他想知道有多少种点菜方法。
由于小A肚子太饿,所以最多只能等待1秒。
输入输出格式
输入格式:
第一行是两个数字,表示N和M。
第二行起N个正数ai(可以有相同的数字,每个数字均在1000以内)。
输出格式:
一个正整数,表示点菜方案数。
输入输出样例
4 4
1 1 2 2
3
#include <cstdio>
#include <cstring>
using namespace std;
int a[];
int ans=;
int m,n;
void dfs (int cur,int sum) {
if (sum>m) return;
if (cur>n) {
if (sum==m) ans++;
return;
}
dfs (cur+,sum+a[cur]);
dfs (cur+,sum);
}
int main() {
memset (a,,sizeof(a));
scanf ("%d%d",&n,&m);
for (int i=;i<=n;i++) {
scanf ("%d",&a[i]);
}
dfs(,);
printf ("%d",ans);
return ;
}
DP不会,暴力过~~~
洛谷 P 1164 小A点菜的更多相关文章
- 【洛谷p1164】小A点菜
(……) 小A点菜[传送门] 上标签: (一个神奇的求背包问题方案总数的题) 核心算法: ;i<=n;i++) for(int j=m;j>=a[i];j--) f[j]+=f[j-a[i ...
- 洛谷 P1164:小A点菜(DP/DFS)
题目背景 uim神犇拿到了uoi的ra(镭牌)后,立刻拉着基友小A到了一家--餐馆,很低端的那种. uim指着墙上的价目表(太低级了没有菜单),说:"随便点". 题目描述 不过ui ...
- 【洛谷4005】小Y和地铁(搜索)
[洛谷4005]小Y和地铁(搜索) 题面 洛谷 有点长. 题解 首先对于需要被链接的两个点,样例中间基本上把所有的情况都给出来了. 但是还缺了一种从下面绕道左边在从整个上面跨过去在从右边绕到下面来的情 ...
- 【洛谷3674】小清新人渣的本愿(莫队,bitset)
[洛谷3674]小清新人渣的本愿(莫队,bitset) 题面 洛谷,自己去看去,太长了 题解 很显然的莫队. 但是怎么查询那几个询问. 对于询问乘积,显然可以暴力枚举因数(反正加起来也是\(O(n\s ...
- BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】
题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...
- 洛谷 1373 dp 小a和uim之大逃离 良心题解
洛谷 1373 dp 这题还不算太难,,当初看的时候不是很理解题意,以为他们会选择两条不同的路径,导致整体思路混乱 传送门 其实理解题意和思路之后还是敲了不短的时间,一部分身体原因再加上中午休息不太好 ...
- [HNOI2009]双递增序列(洛谷P4728)+小烈送菜(内部训练题)——奇妙的dp
博主学习本题的经过嘤嘤嘤: 7.22 : 听学长讲(一知半解)--自己推(推不出来)--网上看题解--以为自己会了(网上题解是错的)--发现错误以后又自己推(没推出来)--给学长发邮件--得到正确解法 ...
- BZOJ4813或洛谷3698 [CQOI2017]小Q的棋盘
BZOJ原题链接 洛谷原题链接 贪心或树形\(DP\)都可做,但显然\(DP\)式子不好推(因为我太菜了),所以我选择贪心. 很显然从根出发主干走最长链是最优的,而剩下的点每个都需要走两步,所以用除去 ...
- 【洛谷1361】 小M的作物(最小割)
传送门 洛谷 Solution 这是一个比较实用的套路,很多题目都有用,而且这个套路难以口胡出来. 考虑把每一个附加贡献重新建一个点,然后向必需的点连边,流量为val. 然后直接种植的从源点向这个点连 ...
随机推荐
- mysql ERROR 2002 (HY000): Can't connect to local MySQL server through socket '/var/run/mysqld/mysqld.sock' (2 "No such file or directory")
解决方案如下:
- Servlet The Request
The Request HTTP Protocol Parameters 所有的HTTP Protocol Parameters都会放在一个Map中, 可以通过getParameterMap得到. 对 ...
- 爆零系列—补题A
http://codeforces.com/contest/615/problem/A 读错题 结果发现是无脑题 直接标记统计 #include<cstdio> #include< ...
- 在一个工程中同时使用Swift和Objective-C
Swift 与 Objective-C 的兼容能力使你可以在同一个工程中同时使用两种语言.你可以用这种叫做 mix and match 的特性来开发基于混合语言的应用,可以用 Swfit 的最新特性实 ...
- Codeforces Round #272 (Div. 2)-B. Dreamoon and WiFi
http://codeforces.com/contest/476/problem/B B. Dreamoon and WiFi time limit per test 1 second memory ...
- Electric Motor Manufacturer - Motor Protection: 5 Questions, 5 Answers
I. Selection principle of motor protectorThe Electric Motor Manufacturer stated that the reasonab ...
- shell脚本,实现奇数行等于偶数行。
请把如下字符串stu494e222fstu495bedf3stu49692236stu49749b91转为如下形式:stu494=e222fstu495=bedf3stu496=92236stu497 ...
- 人脸识别中的检测(在Opencv中加入了QT)
#include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> #include & ...
- java上传、下载、删除ftp文件
一共三个类,一个工具类Ftputil.,一个实体类Kmconfig.一个测试类Test 下载地址:http://download.csdn.net/detail/myfmyfmyfmyf/669710 ...
- Spring框架针对dao层的jdbcTemplate操作crud之delete删除数据库操作 Spring相关Jar包下载
首先,找齐Spring框架中IoC功能.aop功能.JdbcTemplate功能所需的jar包,当前13个Jar包 1.Spring压缩包中的四个核心JAR包,实现IoC控制反转的根据xml配置文件或 ...