poj1930 数论
| Time Limit: 1000MS | Memory Limit: 30000K | |
| Total Submissions: 1258 | Accepted: 379 |
Description
To make this tenable, he assumes that the original fraction is always the simplest one that produces the given sequence of digits; by simplest, he means the the one with smallest denominator. Also, he assumes that he did not neglect to write down important digits; no digit from the repeating portion of the decimal expansion was left unrecorded (even if this repeating portion was all zeroes).
Input
Output
Sample Input
0.2...
0.20...
0.474612399...
0
Sample Output
2/9
1/5
1186531/2500000 题意:最后一位表示循环节,
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm> #define inf 1000000000
#define ll long long using namespace std;
char ch[];
ll ans1,ans2;
ll gcd(ll a,ll b)
{
return b==?a:gcd(b,a%b);
}
void solve(ll a,ll b,ll c,ll d)
{
ll t1=a*d+b*c,t2=b*d,t=gcd(t1,t2);
t1/=t;t2/=t;
if(t2<ans2)ans2=t2,ans1=t1;
}
int main()
{
while(~scanf("%s",ch+))
{
ans2=(ll)1e60;
int n=strlen(ch+);
if(n==)break;
ll b=,a=;
for(int i=;i<=n-;i++)
a=a*+ch[i]-'',b*=;//三个.
ll t=b/*;
for(ll i=;i<=b;i*=,t=t+(b/i)*)
solve(a/i,b/i,a%i,t);
printf("%lld/%lld\n",ans1,ans2);
}
}
poj1930 数论的更多相关文章
- Codeforces Round #382 Div. 2【数论】
C. Tennis Championship(递推,斐波那契) 题意:n个人比赛,淘汰制,要求进行比赛双方的胜场数之差小于等于1.问冠军最多能打多少场比赛.题解:因为n太大,感觉是个构造.写写小数据, ...
- NOIP2014 uoj20解方程 数论(同余)
又是数论题 Q&A Q:你TM做数论上瘾了吗 A:没办法我数论太差了,得多练(shui)啊 题意 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, ...
- 数论学习笔记之解线性方程 a*x + b*y = gcd(a,b)
~>>_<<~ 咳咳!!!今天写此笔记,以防他日老年痴呆后不会解方程了!!! Begin ! ~1~, 首先呢,就看到了一个 gcd(a,b),这是什么鬼玩意呢?什么鬼玩意并不 ...
- hdu 1299 Diophantus of Alexandria (数论)
Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java ...
- 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)
4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 290 Solved: 148[Submit][Status ...
- bzoj2219: 数论之神
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- hdu5072 Coprime (2014鞍山区域赛C题)(数论)
http://acm.hdu.edu.cn/showproblem.php?pid=5072 题意:给出N个数,求有多少个三元组,满足三个数全部两两互质或全部两两不互质. 题解: http://dty ...
- ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德
POJ 1061 青蛙的约会 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%lld & %llu Descr ...
- 数论初步(费马小定理) - Happy 2004
Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2 ...
随机推荐
- dataSource' defined in class path resource [org/springframework/boot/autocon
spring boot启动的时候抛出如下异常: dataSource' defined in class path resource [org/springframework/boot/autocon ...
- RSA不对称加密和公钥 私钥
理论上只要有加密的规则 基本都是可以解密的 但是如果解密需要消耗的时间过长 比如1000年 解密过后已经没什么意义了 此时可认为这种算法不能被破解 也就是说此加密可信 MD5 是一种单向操作 加密后不 ...
- CF 1119F Niyaz and Small Degrees
打VP的时候由于CXR和XRY切题太快了导致我只能去写后面的题了 然而VP的时候大概还有一小时时想出了\(O(n^2\log n)\)的暴力,然后过了二十分钟才想到删点的优化 结果细节很多当然是写不出 ...
- 优先队列的使用——Expedition
一.题目描述 你需要驾驶一辆卡车行驶L单位距离.最开始时,卡车上有P单位的汽油.卡车每开1单位距离需要消耗1单位的汽油.如果在途中车上的汽油耗尽,卡车就无法继续前行,因而无法到达终点.中途共有N个加油 ...
- python基础一 day11 装饰器复习
# 复习# 讲作业# 装饰器的进阶 # functools.wraps # 带参数的装饰器 # 多个装饰器装饰同一个函数# 周末的作业 # 文件操作 # 字符串处理 # 输入输出 # 流程控制 # 装 ...
- MFC学习小结
2019/1/13 视频来源 一. MFC框架中一些重要的函数 1. InitInstance函数 应用程序类的一个虚函数,MFC应用程序的入口.初始化的作用. 2. PreCreateWindo ...
- 数据库事务ACID和事务的隔离级别
借鉴:https://blog.csdn.net/zh521zh/article/details/69400053和https://blog.csdn.net/May_3/article/detail ...
- Hdu 3177 (贪心)
题目大意: 山洞的体积为\(v\) 第\(i\)个物品放在山洞里会占据\(a_i\)的空间,在搬运过程中至少需要\(b_i\)的空间 问能不能把所有物品都放下 贪心题.比较难看出贪心,但是从无顺序要求 ...
- 【OS_Linux】Linux下软件的安装与卸载
1.Linux中软件安装包的分类 1) 一类是可执行的软件包,无需编译直接安装.在Windows中所有的软件包都是这种类型.安装完这个程序后,你就可以使用,但你看不到源程序.而且下载时要注意这个软件是 ...
- (32)zabbix分布式监控proxy vs nodes
概述 zabbix为IT基础设施提供有效和可用的分布式监控,zabbix提供了两种解决方案,分别为:proxy和nodes.proxy代替zabbix server在本地检索数据,然后提交给zabbi ...
