Dead Fraction
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 1258   Accepted: 379

Description

Mike is frantically scrambling to finish his thesis at the last minute. He needs to assemble all his research notes into vaguely coherent form in the next 3 days. Unfortunately, he notices that he had been extremely sloppy in his calculations. Whenever he needed to perform arithmetic, he just plugged it into a calculator and scribbled down as much of the answer as he felt was relevant. Whenever a repeating fraction was displayed, Mike simply reccorded the first few digits followed by "...". For instance, instead of "1/3" he might have written down "0.3333...". Unfortunately, his results require exact fractions! He doesn't have time to redo every calculation, so he needs you to write a program (and FAST!) to automatically deduce the original fractions. 
To make this tenable, he assumes that the original fraction is always the simplest one that produces the given sequence of digits; by simplest, he means the the one with smallest denominator. Also, he assumes that he did not neglect to write down important digits; no digit from the repeating portion of the decimal expansion was left unrecorded (even if this repeating portion was all zeroes).

Input

There are several test cases. For each test case there is one line of input of the form "0.dddd..." where dddd is a string of 1 to 9 digits, not all zero. A line containing 0 follows the last case.

Output

For each case, output the original fraction.

Sample Input

0.2...
0.20...
0.474612399...
0

Sample Output

2/9
1/5
1186531/2500000 题意:最后一位表示循环节,
 #include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm> #define inf 1000000000
#define ll long long using namespace std;
char ch[];
ll ans1,ans2;
ll gcd(ll a,ll b)
{
return b==?a:gcd(b,a%b);
}
void solve(ll a,ll b,ll c,ll d)
{
ll t1=a*d+b*c,t2=b*d,t=gcd(t1,t2);
t1/=t;t2/=t;
if(t2<ans2)ans2=t2,ans1=t1;
}
int main()
{
while(~scanf("%s",ch+))
{
ans2=(ll)1e60;
int n=strlen(ch+);
if(n==)break;
ll b=,a=;
for(int i=;i<=n-;i++)
a=a*+ch[i]-'',b*=;//三个.
ll t=b/*;
for(ll i=;i<=b;i*=,t=t+(b/i)*)
solve(a/i,b/i,a%i,t);
printf("%lld/%lld\n",ans1,ans2);
}
}
 
 

poj1930 数论的更多相关文章

  1. Codeforces Round #382 Div. 2【数论】

    C. Tennis Championship(递推,斐波那契) 题意:n个人比赛,淘汰制,要求进行比赛双方的胜场数之差小于等于1.问冠军最多能打多少场比赛.题解:因为n太大,感觉是个构造.写写小数据, ...

  2. NOIP2014 uoj20解方程 数论(同余)

    又是数论题 Q&A Q:你TM做数论上瘾了吗 A:没办法我数论太差了,得多练(shui)啊 题意 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, ...

  3. 数论学习笔记之解线性方程 a*x + b*y = gcd(a,b)

    ~>>_<<~ 咳咳!!!今天写此笔记,以防他日老年痴呆后不会解方程了!!! Begin ! ~1~, 首先呢,就看到了一个 gcd(a,b),这是什么鬼玩意呢?什么鬼玩意并不 ...

  4. hdu 1299 Diophantus of Alexandria (数论)

    Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  5. 【BZOJ-4522】密钥破解 数论 + 模拟 ( Pollard_Rho分解 + Exgcd求逆元 + 快速幂 + 快速乘)

    4522: [Cqoi2016]密钥破解 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 290  Solved: 148[Submit][Status ...

  6. bzoj2219: 数论之神

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  7. hdu5072 Coprime (2014鞍山区域赛C题)(数论)

    http://acm.hdu.edu.cn/showproblem.php?pid=5072 题意:给出N个数,求有多少个三元组,满足三个数全部两两互质或全部两两不互质. 题解: http://dty ...

  8. ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德

    POJ 1061 青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu  Descr ...

  9. 数论初步(费马小定理) - Happy 2004

    Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2 ...

随机推荐

  1. dataSource' defined in class path resource [org/springframework/boot/autocon

    spring boot启动的时候抛出如下异常: dataSource' defined in class path resource [org/springframework/boot/autocon ...

  2. RSA不对称加密和公钥 私钥

    理论上只要有加密的规则 基本都是可以解密的 但是如果解密需要消耗的时间过长 比如1000年 解密过后已经没什么意义了 此时可认为这种算法不能被破解 也就是说此加密可信 MD5 是一种单向操作 加密后不 ...

  3. CF 1119F Niyaz and Small Degrees

    打VP的时候由于CXR和XRY切题太快了导致我只能去写后面的题了 然而VP的时候大概还有一小时时想出了\(O(n^2\log n)\)的暴力,然后过了二十分钟才想到删点的优化 结果细节很多当然是写不出 ...

  4. 优先队列的使用——Expedition

    一.题目描述 你需要驾驶一辆卡车行驶L单位距离.最开始时,卡车上有P单位的汽油.卡车每开1单位距离需要消耗1单位的汽油.如果在途中车上的汽油耗尽,卡车就无法继续前行,因而无法到达终点.中途共有N个加油 ...

  5. python基础一 day11 装饰器复习

    # 复习# 讲作业# 装饰器的进阶 # functools.wraps # 带参数的装饰器 # 多个装饰器装饰同一个函数# 周末的作业 # 文件操作 # 字符串处理 # 输入输出 # 流程控制 # 装 ...

  6. MFC学习小结

    2019/1/13 视频来源 一.   MFC框架中一些重要的函数 1. InitInstance函数 应用程序类的一个虚函数,MFC应用程序的入口.初始化的作用. 2. PreCreateWindo ...

  7. 数据库事务ACID和事务的隔离级别

    借鉴:https://blog.csdn.net/zh521zh/article/details/69400053和https://blog.csdn.net/May_3/article/detail ...

  8. Hdu 3177 (贪心)

    题目大意: 山洞的体积为\(v\) 第\(i\)个物品放在山洞里会占据\(a_i\)的空间,在搬运过程中至少需要\(b_i\)的空间 问能不能把所有物品都放下 贪心题.比较难看出贪心,但是从无顺序要求 ...

  9. 【OS_Linux】Linux下软件的安装与卸载

    1.Linux中软件安装包的分类 1) 一类是可执行的软件包,无需编译直接安装.在Windows中所有的软件包都是这种类型.安装完这个程序后,你就可以使用,但你看不到源程序.而且下载时要注意这个软件是 ...

  10. (32)zabbix分布式监控proxy vs nodes

    概述 zabbix为IT基础设施提供有效和可用的分布式监控,zabbix提供了两种解决方案,分别为:proxy和nodes.proxy代替zabbix server在本地检索数据,然后提交给zabbi ...