B树、B+树、红黑树、AVL树
定义及概念
B树
二叉树的深度较大,在查找时会造成I/O读写频繁,查询效率低下,所以引入了多叉树的结构,也就是B树。
阶为M的B树具有以下性质:
1、根节点在不为叶子节点的情况下儿子数为 2 ~ M
2、除根结点以外的非叶子结点的儿子数为 M/2(向上取整) ~ M
3、拥有 K 个孩子的非叶子节点包含 k-1 个keys(关键字),且递增排列
4、所有叶子结点在同一层,即深度相同
(叶节点可以看成是一种外部节点,不包含任何关键字信息)
在B-树中,每个结点中关键字从小到大排列,并且当该结点的孩子是非叶子结点时,该k-1个关键字正好是k个孩子包含的关键字的值域的分划。
因为叶子结点不包含关键字,所以可以把叶子结点看成在树里实际上并不存在外部结点,指向这些外部结点的指针为空,叶子结点的数目正好等于树中所包含的关键字总个数加1。
B+树
B+ 树通常用于数据库和操作系统的文件系统中。特点是能够保持数据稳定有序,其插入与修改拥有较稳定的对数时间复杂度。B+ 树元素自底向上插入。
B+树是B-树的变体,也是一种多路搜索树,其定义基本与B-树相同,不同如下:
1、拥有 K 个孩子的非叶子节点包含 k 个keys(关键字),且递增排列。每个关键字不保存数据,只用来索引。
2、所有的叶子结点中包含了全部关键字的信息,及指向含有这些关键字记录的指针,且叶子结点本身依关键字的大小自小而大顺序链接。
3、所有的非叶子结点可以看成是索引部分,结点中仅含有其子树(根结点)中最大(或最小)关键字
4、非叶子结点的子树指针P[i],指向关键字值属于[ K[i], K[i+1] )的子树
5、为所有叶子结点增加一个链指针
红黑树
一棵二叉树如果满足下面的红黑性质,则为一棵红黑树:
1、每个结点或是红的,或是黑的。
2、根结点是黑的。
3、每个叶结点 (NIL) 是黑的。
4、如果一个结点是红的,则它的两个儿子都是黑的。
5、对每个结点,从该结点到其子孙结点的所有路径上包含相同数目的黑结点。
AVL树
关于AVL树,可以借鉴《数据结构——AVL树》,可以直接看这里,就不再熬诉。
定义:
1、左子树和右子树都是AVL树
2、左子树和右子树的高度差不超过1 ,|HL-HR|<=1
性质:
1、一棵n个结点的AVL树的其高度保持在0(log2(n)),不会超过3/2log2(n+1)
2、一棵n个结点的AVL树的平均搜索长度保持在0(log2(n)).
3、一棵n个结点的AVL树删除一个结点做平衡化旋转所需要的时间为0(log2(n)).
B树和B+树的区别
B/B+树用在磁盘文件组织、数据索引和数据库索引中。其中B+树比B 树更适合实际应用中操作系统的文件索引和数据库索引,因为:
1、B+树的磁盘读写代价更低
B+树的内部结点并没有指向关键字具体信息的指针。因此其内部结点相对B 树更小。如果把所有同一内部结点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多。一次性读入内存中的需要查找的关键字也就越多。相对来说IO读写次数也就降低了。
举个例子,假设磁盘中的一个盘块容纳16bytes,而一个关键字2bytes,一个关键字具体信息指针2bytes。一棵9阶B-tree(一个结点最多8个关键字)的内部结点需要2个盘快。而B+ 树内部结点只需要1个盘快。当需要把内部结点读入内存中的时候,B 树就比B+ 树多一次盘块查找时间(在磁盘中就是盘片旋转的时间)。
2、B+-tree的查询效率更加稳定
由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。
3、B树在元素遍历的时候效率较低
B+树只要遍历叶子节点就可以实现整棵树的遍历。在数据库中基于范围的查询相对频繁,所以此时B+树优于B树。
红黑树的应用及和B树区别
应用:
1、广泛用在C++的STL中。map和set都是用红黑树实现的。
2、著名的linux进程调度Completely Fair Scheduler,用红黑树管理进程控制块
3、epoll在内核中的实现,用红黑树管理事件块
4、nginx中,用红黑树管理timer等
5、Java的TreeMap实现
等等
和B树比较
一言而知就是树的深度较高,在磁盘I/O方面的表现不如B树。
要获取磁盘上数据,必须先通过磁盘移动臂移动到数据所在的柱面,然后找到指定盘面,接着旋转盘面找到数据所在的磁道,最后对数据进行读写。磁盘IO代价主要花费在查找所需的柱面上,树的深度过大会造成磁盘IO频繁读写。根据磁盘查找存取的次数往往由树的高度所决定。
所以,在大规模数据存储的时候,红黑树往往出现由于树的深度过大而造成磁盘IO读写过于频繁,进而导致效率低下。在这方面,B树表现相对优异,B树可以有多个子女,从几十到上千,可以降低树的高度。
AVL树和红黑树
红黑树的算法时间复杂度和AVL相同,但统计性能比AVL树更高。
1、红黑树和AVL树都能够以O(log2 n)的时间复杂度进行搜索、插入、删除操作。
2、由于设计,红黑树的任何不平衡都会在三次旋转之内解决。AVL树增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。
在查找方面:
红黑树的性质(最长路径长度不超过最短路径长度的2倍),其查找代价基本维持在O(logN)左右,但在最差情况下(最长路径是最短路径的2倍少1),比AVL要略逊色一点。
AVL是严格平衡的二叉查找树(平衡因子不超过1)。查找过程中不会出现最差情况的单支树。因此查找效率最好,最坏情况都是O(logN)数量级的。
所以,综上:
AVL比RBtree更加平衡,但是AVL的插入和删除会带来大量的旋转。 所以如果插入和删除比较多的情况,应该使用RBtree, 如果查询操作比较多,应该使用AVL。
AVL是一种高度平衡的二叉树,维护这种高度平衡所付出的代价比从中获得的效率收益还大,故而实际的应用不多,更多的地方是用追求局部而不是非常严格整体平衡的红黑树。当然,如果场景中对插入删除不频繁,只是对查找特别有要求,AVL还是优于红黑的。
B树、B+树、红黑树、AVL树的更多相关文章
- 从二叉搜索树到AVL树再到红黑树 B树
这几种树都属于数据结构中较为复杂的,在平时面试中,经常会问理解用法,但一般不会问具体的实现,所以今天来梳理一下这几种树之间的区别与联系,感谢知乎用户@Cailiang,这篇文章参考了他的专栏. 二叉查 ...
- 从二叉查找树到平衡树:avl, 2-3树,左倾红黑树(含实现代码),传统红黑树
参考:自平衡二叉查找树 ,红黑树, 算法:理解红黑树 (英文pdf:红黑树) 目录 自平衡二叉树介绍 avl树 2-3树 LLRBT(Left-leaning red-black tree左倾红黑树 ...
- 1.红黑树和自平衡二叉(查找)树区别 2.红黑树与B树的区别
1.红黑树和自平衡二叉(查找)树区别 1.红黑树放弃了追求完全平衡,追求大致平衡,在与平衡二叉树的时间复杂度相差不大的情况下,保证每次插入最多只需要三次旋转就能达到平衡,实现起来也更为简单. 2.平衡 ...
- 数据结构和算法(Golang实现)(29)查找算法-2-3树和左倾红黑树
某些教程不区分普通红黑树和左倾红黑树的区别,直接将左倾红黑树拿来教学,并且称其为红黑树,因为左倾红黑树与普通的红黑树相比,实现起来较为简单,容易教学.在这里,我们区分开左倾红黑树和普通红黑树. 红黑树 ...
- Red Black Tree 红黑树 AVL trees 2-3 trees 2-3-4 trees B-trees Red-black trees Balanced search tree 平衡搜索树
小结: 1.红黑树:典型的用途是实现关联数组 2.旋转 当我们在对红黑树进行插入和删除等操作时,对树做了修改,那么可能会违背红黑树的性质.为了保持红黑树的性质,我们可以通过对树进行旋转,即修改树中某些 ...
- 浅谈AVL树,红黑树,B树,B+树原理及应用(转)
出自:https://blog.csdn.net/whoamiyang/article/details/51926985 背景:这几天在看<高性能Mysql>,在看到创建高性能的索引,书上 ...
- 浅谈AVL树,红黑树,B树,B+树原理及应用
背景:这几天在看<高性能Mysql>,在看到创建高性能的索引,书上说mysql的存储引擎InnoDB采用的索引类型是B+Tree,那么,大家有没有产生这样一个疑问,对于数据索引,为什么要使 ...
- 红黑树/B+树/AVL树
RB Tree 红黑树 :http://blog.csdn.net/very_2/article/details/5722682 Nginx的RBTree实现 :http://blog.csdn ...
- AVL树的JAVA实现及AVL树的旋转算法
1,AVL树又称平衡二叉树,它首先是一颗二叉查找树,但在二叉查找树中,某个结点的左右子树高度之差的绝对值可能会超过1,称之为不平衡.而在平衡二叉树中,任何结点的左右子树高度之差的绝对值会小于等于 1. ...
- Java数据结构与算法(21) - ch09红黑树(RB树)
红-黑规则1. 每一个节点不是红色的就是黑色的2. 根总是黑色的3. 如果节点是红色的,则它的子节点必须是黑色的:如果节点是黑色的,其子节点不是必须为红色.4. 从根到叶节点或空子节点的每条路径,必须 ...
随机推荐
- 织梦CMS如何在首页调用指定的文章 idlist
在网站首页调用站内新闻是必不可少的,但是有的时候不能根据自己的需要来调用指定的文章,想要调用自己指定的文章还要做一些修改. 在网站中调用指定文章可以使用织梦默认的标签idlist,在调用的时候使用以下 ...
- linux初级学习笔记二:linux操作系统及常用命令,文件的创建与删除和命名规则,命令行展开以及linux中部分目录的作用!(视频序号:02_3)
本节学习的命令:tree,mkdir,rmdir,touch,stat,rm 本节学习的技能:Linux中主要的目录作用以及特殊的目录文件: 文件的命名规则,命令行展开: 文件的创建与删除: Linu ...
- poj 1860 Currency Exchange 解题报告
题目链接:http://poj.org/problem?id=1860 题目意思:给出 N 种 currency, M种兑换方式,Nick 拥有的的currency 编号S 以及他的具体的curren ...
- opencv直方图该怎么画
图像直方图是反映图像中像素分布特性的统计表,一般显示如下: 其中横坐标代表的是图像像素的种类,或者说是灰度级,纵坐标代表的是每一级灰度下像素数或者该灰度级下像素数在所有图像总像素数总所占的百分比. 直 ...
- H5页面解决左右滑动问题
在head里面加入. <meta name="viewport" content="width=device-width, initial-scale=1.0, u ...
- ul下的li浮动,如何是ul有li的高度
此时ul展示的界面为: ①给ul加上一个样式,display:inline-block; <html> <head> <title>float</title& ...
- hadoop推荐
hadoop官网 我以Hadoop 2.7.3为例. hadoop 2.7.3 官网 . 用的操作系统是64bit Ubuntu14.04. 其中我们还可以学习 Apache Maven Proje ...
- Moctf--没时间解释了
记录一道简单的题目. 打开后就张这个样子,,然后看到url为index2.php---->所以我们把它改为index.php(用burp抓包才行,这是一个302跳转). 看到它提示我们要uplo ...
- hdoj1097
好久没有遇到过这样的题,似乎记得以前完全就是靠规律啊什么的.... 然后刚刚看到,这不就是快速幂取膜就好了嘛- #include <stdio.h> #include <string ...
- 【POJ - 2664】Prerequisites? (排序+查找)
Prerequisites? 原文是English,这里直接就写中文吧 题意简述 k:已经选择的科目数:m:选择的科目类别:c:能够选择的科目数.r:要求最少选择的科目数量 在输入的k和m以下的一行是 ...