建图细节比较多,对于每个点i,拆成i和i',i表示用的餐巾,i'表示脏餐巾,连接:

(s,i,r[i],p)表示在这一天买新餐巾

(i,t,r[i],0)表示这一天用了r[i]的餐巾

(s,i+n,r[i],0)表示这一天有r[i]条脏餐巾

if(i+ft<=n) ins(i+n,i+ft,inf,fp)注意特判,表示送去快洗,inf是因为这一天的脏餐巾不止这一天剩下的,还有之前剩下的

if(i+st<=n) ins(i+n,i+st,inf,sp)注意特判,表示送去慢洗,inf是因为这一天的脏餐巾不止这一天剩下的,还有之前剩下的

if(i<n) ins(i+n,i+n+1,inf,0)注意特判,表示这一天的脏餐巾剩到第二天

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const long long N=5005,inf=1e18;
long long n,p,ft,fp,st,sp,h[N],cnt=1,fr[N],dis[N],s,t,r[N],ans;
bool v[N];
struct qwe
{
long long ne,no,to,va,w;
}e[N*20];
long long read()
{
long long r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(long long u,long long v,long long c,long long w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].no=u;
e[cnt].to=v;
e[cnt].va=c;
e[cnt].w=w;
h[u]=cnt;
}
void ins(long long u,long long v,long long c,long long w)
{
add(u,v,c,w);
add(v,u,0,-w);
}
bool spfa()
{
memset(v,0,sizeof(v));
queue<long long>q;
for(long long i=s;i<=t;i++)
dis[i]=inf;
dis[s]=0;
v[s]=1;
q.push(s);
while(!q.empty())
{
long long u=q.front();
q.pop();
v[u]=0;
for(long long i=h[u];i;i=e[i].ne)
if(e[i].va>0&&dis[e[i].to]>dis[u]+e[i].w)
{
dis[e[i].to]=dis[u]+e[i].w;
fr[e[i].to]=i;
if(!v[e[i].to])
{
v[e[i].to]=1;
q.push(e[i].to);
}
}
}
return dis[t]!=inf;
}
void mcf()
{
long long x=inf;
for(long long i=fr[t];i;i=fr[e[i].no])
x=min(x,e[i].va);
for(long long i=fr[t];i;i=fr[e[i].no])
{
e[i].va-=x;
e[i^1].va+=x;
ans+=x*e[i].w;
}
}
int main()
{
n=read();
s=0,t=2*n+1;
for(long long i=1;i<=n;i++)
r[i]=read();
p=read(),ft=read(),fp=read(),st=read(),sp=read();
for(long long i=1;i<=n;i++)
{
ins(s,i,r[i],p);
ins(i,t,r[i],0);
ins(s,i+n,r[i],0);
if(i+ft<=n)
ins(i+n,i+ft,inf,fp);
if(i+st<=n)
ins(i+n,i+st,inf,sp);
if(i<n)
ins(i+n,i+n+1,inf,0);
}
while(spfa())
mcf();
printf("%lld\n",ans);
return 0;
}

洛谷 P1251 餐巾计划问题【最小费用最大流】的更多相关文章

  1. 洛谷P1251 餐巾计划问题(最小费用最大流)

    题意 一家餐厅,第$i$天需要$r_i$块餐巾,每天获取餐巾有三种途径 1.以$p$的费用买 2.以$f$的费用送到快洗部,并在$m$天后取出 3.以$s$的费用送到慢洗部,并在$n$天后取出 问满足 ...

  2. 洛谷P1251 餐巾计划问题(费用流)

    传送门 不得不说这题真是思路清奇,真是网络流的一道好题,完全没想到网络流的建图还可以这么建 我们把每一个点拆成两个点,分别表示白天和晚上,白天可以得到干净的餐巾(购买的,慢洗的,快洗的),晚上可以得到 ...

  3. 洛谷 P1251 餐巾计划问题(线性规划网络优化)【费用流】

    (题外话:心塞...大部分时间都在debug,拆点忘记加N,总边数算错,数据类型标错,字母写错......) 题目链接:https://www.luogu.org/problemnew/show/P1 ...

  4. 洛谷 P1251 餐巾计划问题

    题目链接 最小费用最大流. 每天拆成两个点,早上和晚上: 晚上可以获得\(r_i\)条脏毛巾,从源点连一条容量为\(r_i\),费用为0的边. 早上要供应\(r_i\)条毛巾,连向汇点一条容量为\(r ...

  5. 洛谷P3381 - 【模板】最小费用最大流

    原题链接 题意简述 模板题啦~ 题解 每次都以费用作为边权求一下最短路,然后沿着最短路增广. Code //[模板]最小费用最大流 #include <cstdio> #include & ...

  6. 洛谷 P2053 [SCOI2007]修车(最小费用最大流)

    题解 最小费用最大流 n和m是反着的 首先, \[ ans = \sum{cost[i][j]}*k \] 其中,\(k\)为它在当前技术人员那里,排倒数第\(k\)个修 我们可以对于每个技术人员进行 ...

  7. 洛谷 P3381【模板】最小费用最大流

    题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入输出格式 输入格式: 第一行包含四个正整数N.M.S.T,分别表 ...

  8. 洛谷 P3381 【模板】最小费用最大流

    题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入输出格式 输入格式: 第一行包含四个正整数\(N.M.S.T\) ...

  9. 洛谷P3381 【模板】最小费用最大流(dijstra费用流)

    题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入输出格式 输入格式: 第一行包含四个正整数N.M.S.T,分别表 ...

随机推荐

  1. Back弹出AlertDialog

    package com.pingyijinren.helloworld.activity; import android.content.DialogInterface; import android ...

  2. 从零开始写STL-二叉搜索树

    二叉查找树(Binary Search Tree),(又:二叉搜索树,二叉排序树)它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若它的 ...

  3. 学习日常笔记<day15>mysql基础

    1.数据库入门 1.1数据库软件 数据库:俗称数据的仓库,方便管理数据的软件(或程序) 1.2市面上数据库软件 Oracle,甲骨文公司的产品. 当前最流行应用最广泛的数据库软件.和java语言兼容非 ...

  4. Java面试题总结之Java基础(三)

    1.JAVA 语言如何进行异常处理,关键字:throws,throw,try,catch,finally分别代表什么意义?在try 块中可以抛出异常吗? 答:Java 通过面向对象的方法进行异常处理, ...

  5. spring boot + redis 实现session共享

    这次带来的是spring boot + redis 实现session共享的教程. 在spring boot的文档中,告诉我们添加@EnableRedisHttpSession来开启spring se ...

  6. 【深度探索c++对象模型】Function语义学之成员函数调用方式

    非静态成员函数 c++的设计准则之一就是:非静态成员函数至少和一般的非成员函数有相同的效率.编译器内部已将member函数实体转换为对等的nonmember函数实体. 转化步骤: 1.改写函数原型以安 ...

  7. 【Nginx】请求上下文

    上下文与全异步web服务器的关系 请求上下文指在一个请求的处理过程中,把一些关键的信息保存下来的类似struct这样的结构体.每个http模块都可以有自己的上下文结构体,一般都是在刚开始处理请求时在内 ...

  8. Hexo搭建个人blog

    Hexo搭建 现在只想说心累... 前几天看了几个牛人的blog,感觉他们的风格很舒服,然后就发现了Hexo这个好东西!激动的想马上自己也弄一个,昨天晚上开始看资料特别是:潘柏信写了两篇 HEXO搭建 ...

  9. Angular团队公布路线图,并演示怎样与React Native集成

    本文来源于我在InfoQ中文站翻译的文章,原文地址是:http://www.infoq.com/cn/news/2015/06/angular-2-react-native-roadmap 前不久在旧 ...

  10. Android进阶图片处理之三级缓存方案

    图片的三级缓存 一.概述 一開始在学习Android的时候.处理图片的时候,每次获取图片都是直接从网络上面载入图片. 可是在开发项目的过程中,每次点击进入app里面,图片都要慢慢的再一次从网络上面载入 ...