P3158 [CQOI2011]放棋子
题解(因为公式太多懒得自己抄写一遍了……)
//minamoto
#include<bits/stdc++.h>
#define ll long long
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int N=35,M=15,L=908,P=1e9+9;
int g[N][N],f[N][N][M],c[L][L];
inline int add(const R int &x,const R int &y){return x+y>=P?x+y-P:x+y;}
inline int dec(const R int &x,const R int &y){return x-y<0?x-y+P:x-y;}
int x,n,m,col,ans,tmp,tx,ty;
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d%d%d",&n,&m,&col),tmp=n*m;
fp(i,0,tmp)c[i][0]=1;
fp(i,1,tmp)fp(j,1,i)c[i][j]=add(c[i-1][j],c[i-1][j-1]);
f[0][0][0]=1;
fp(k,1,col){
scanf("%d",&x);memset(g,0,sizeof(g));
fp(i,1,n)fp(j,1,m)if(i*j>=x){
g[i][j]=c[i*j][x];
fp(l,1,i)fp(r,1,j)if(l<i||r<j)
g[i][j]=dec(g[i][j],1ll*g[l][r]*c[i][l]%P*c[j][r]%P);
}
fp(i,1,n)fp(j,1,m)fp(l,0,i-1)fp(r,0,j-1){
tx=i-l,ty=j-r;
if(tx*ty>=x)
f[i][j][k]=add(f[i][j][k],1ll*f[l][r][k-1]*g[tx][ty]%P*c[n-l][tx]%P*c[m-r][ty]%P);
}
}fp(i,1,n)fp(j,1,m)ans=add(ans,f[i][j][col]);
printf("%d\n",ans);return 0;
}
P3158 [CQOI2011]放棋子的更多相关文章
- P3158 [CQOI2011]放棋子(dp+组合数)
P3158 [CQOI2011]放棋子 放棋子的顺序和方案数无关,所以可以从按颜色递推 设$f[u][p][k]$为放到第$u$种颜色,所剩空间$p*k$的方案数 $g[u][i][j]$表示第$u$ ...
- [洛谷P3158] [CQOI2011]放棋子
洛谷题目链接:[CQOI2011]放棋子 题目描述 在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同 颜色的棋子不能在同一行或者同一列.有多少祌方法?例如,n=m=3,有两个 ...
- 洛谷P3158 [CQOI2011]放棋子 组合数学+DP
题意:在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同颜色的棋子不能在同一行或者同一列.有多少祌方法? 解法:这道题不会做,太菜了qwq.题解是看洛谷大佬的. 设C是组合数, ...
- 题解 P3158 [CQOI2011]放棋子
题解 本题是一个 \(DP\) 加 容斥,容斥的式子很好推,重点是如何想到和如何推出 \(DP\) 部分的式子. 因为不同种颜色的棋子不能放在同一行或同一列,所以不同种的棋子是相对独立的. 据此,我们 ...
- BZOJ 3294: [Cqoi2011]放棋子
3294: [Cqoi2011]放棋子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 628 Solved: 238[Submit][Status] ...
- bzoj3294[Cqoi2011]放棋子 dp+组合+容斥
3294: [Cqoi2011]放棋子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 755 Solved: 294[Submit][Status] ...
- [CQOI2011]放棋子 (DP,数论)
[CQOI2011]放棋子 \(solution:\) 看到这道题我们首先就应该想到有可能是DP和数论,因为题目已经很有特性了(首先题面是放棋子)(然后这一题方案数很多要取模)(而且这一题的数据范围很 ...
- bzoj千题计划261:bzoj3294: [Cqoi2011]放棋子
http://www.lydsy.com/JudgeOnline/problem.php?id=3294 如果一个颜色的棋子放在了第i行第j列,那这种颜色就会占据第i行第j列,其他颜色不能往这儿放 设 ...
- 【BZOJ 3294】 3294: [Cqoi2011]放棋子 (DP+组合数学+容斥原理)
3294: [Cqoi2011]放棋子 Description Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数 ...
随机推荐
- POJ 2513 【字典树】【欧拉回路】
题意: 有很多棒子,两端有颜色,告诉你两端的颜色,让你把这些棒子拼接起来要求相邻的接点的两个颜色是一样的. 问能否拼接成功. 思路: 将颜色看作节点,将棒子看作边,寻找欧拉通路. 保证图的连通性的时候 ...
- C\C++中strcat()函数、sprintf函数
http://blog.csdn.net/smf0504/article/details/52055971 http://c.biancheng.net/cpp/html/295.html
- requests库帮助
requests库帮助 http://docs.python-requests.org/zh_CN/latest/user/quickstart.html
- CentOS 7下安装Logstash ELK Stack 日志管理系统(上)
介绍 The Elastic Stack - 它不是一个软件,而是Elasticsearch,Logstash,Kibana 开源软件的集合,对外是作为一个日志管理系统的开源方案.它可以从任何来源,任 ...
- Office PDF如何批量删除书签
网上下了本PDF,不知道哪个傻逼每一页都做了一个书签,我真的想做个书签,看看自己做到哪一页都被搞乱了.狗日的,还没有批量删除功能. 方法就是,你定位到任意一个书签,然后按住Delete键,然后就可 ...
- Linux 命令 sudo
sudo 这个命令. 是为了 让 普通用户 ,也能够以root的身份来运行 操作, 而这些普通用户 又不须要知道root的password. 在 sudo 运行命令的时候. 仅仅须要 输入自己的pas ...
- 汝佳大神的紫书上写错了?uva10048
算法竞赛入门经典第二版的365页例题11-5噪音.应该是"之和"换成"取最大值","取最小值"还是取最小值 假设我错了,请大家务必指点小弟 ...
- activiti自己定义流程之自己定义表单(一):环境配置
先补充说一下自己定义流程整个的思路,自己定义流程的目的就是为了让一套代码解决多种业务流程.比方请假单.报销单.採购单.协作单等等.用户自己来设计流程图. 这里要涉及到这样几个基本问题,一是不同的业务需 ...
- [Tue, 11 Aug 2015 ~ Mon, 17 Aug 2015] Deep Learning in arxiv
Image Representations and New Domains inNeural Image Captioning we find that a state-of-theart neura ...
- Linux学习笔记:系统启动引导过程
Linux系统启动引导过程 近期发现自己在仅仅是掌握上有几个比較硬的伤: 一.知识体系碎片,比方Linux,这学点那学点,结果没有成体系,串不起来: 二.记忆时间短暂,非常多的内容学了就忘,最后的结果 ...