出处:arXiv: Artificial Intelligence, 2016(一年了还没中吗?)

Motivation

使用GAN+RNN来处理continuous sequential data,并训练生成古典音乐

Introduction

In this work, we investigate the feasibility of using adversarial training for a sequential model with continuous data, and evaluate it using classical music in freely available midi files.也就是利用GAN+RNN来处理midi file中的连续数据。RNN主要工作用于处理时序相关的自然语言,同时也被引入到了音乐生成的领域[1,2,3],but to our knowledge they always use a symbolic representation. In contrast,our work demonstrates how one can train a highly flexible and expressive model with fully continuous sequence data for tone lengths, frequencies, intensities, and timing.作者还刻意提到了LapGAN实现coarse-to-fine的图片生成过程(个人思考:对音乐生成很有启发,包括利用双层GAN来从caption生成image,一层用于生成低分辨率的粗线条色彩图片,一层用于生成细节,这些思路应该可以结合到音乐生成中去)。

Model

对抗网络中的G和D都是RNN模型,损失函数定义为

The input to each cell in G is a random vector, concatenated with the output of previous cell.D采用的是双向循环RNN(LSTM)。数据方面构建了一个tone length, frequency, intensity, and time的四元数组,数据可以表示出复调和弦polyphonous chords。

G和D的LSTM层数皆设置为2,BaseLine为去掉对抗性的单一的RNN生成网络。训练集Dataset是从网上down下来的标准midi格式的古典音乐文件,对所有的”note on“事件进行了记录的读取(包括该note的其他属性,时延,tone,强度等等),代码地址:https://github.com/olofmogren/c-rnn-gan

Training过程中使用了很多小技巧:

  • 使用L2 regularization对G和D的权重做正则化约束
  • The model was pretrained for 6 epochs with a squared error loss for predicting the next event in the
    training sequence
  • the input to each LSTM cell is a random vector v, concatenated with the output at previous time step. v is uniformly distributed in [0; 1]k, and k
    was chosen to be the number of features in each tone, 4.
  • 在预训练时,对采样的序列长度做了管理,从小序列开始逐渐加大,最后变成长序列
  • 采用了[4]中的freezen的trick,当D或G被训练得异常强大以至于对方梯度消失,无法正常进行训练时,对过于强大的一方实施冻结。这里采用的是A‘s training loss is less than 70% of the training loss of B时,冻结A
  • 采用了[4]中的feature matching的trick,将G的目标函数替换为使真假样本的feature差值最小化:

  其中,R是D的最后一层(激活函数logistic之前)输出。

评估标准

Polyphony 复音是否在同一时间点开始

Scale consistency were computed by counting the fraction of tones that were part of a standard scale, and reporting the number for the best matching such scale.(标准音程是什么鬼?)

Repetitions 小节重复数量

Tone span 最高音和最低音的音程统计

评估工具代码也放在github上面了

结论

第一例通过GAN对抗训练来生成音乐的paper。从人耳听觉的感受上来说,c-RNN-GAN生成的音乐完全不能和真实样本相提并论,应该是单纯地进行对抗训练,单轨音调,缺乏先验乐理知识的融入的缘故导致。

sample 试听:http://mogren.one/publications/2016/c-rnn-gan/

[1]Douglas Eck and Juergen Schmidhuber. Finding temporal structure in music: Blues improvisation
with lstm recurrent networks. In Neural Networks for Signal Processing, 2002. Proceedings of the
2002 12th IEEE Workshop on, pages 747–756. IEEE, 2002.

[2]Pascal Vincent Nicolas Boulanger-Lewandowski, Yoshua Bengio. Modeling temporal dependencies
in high-dimensional sequences: Application to polyphonic music generation and transcription. In
Proceedings of the 29th International Conference on Machine Learning (ICML), page 1159–1166,
2012.

[3]Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets
with policy gradient. arXiv preprint arXiv:1609.05473, 2016.

[4]Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in Neural Information Processing Systems,
pages 2226–2234, 2016.

代码分析

Restore保存的参数:

'num_layers_g' : RNN cell g的层数

'num_layers_d' :RNN Cell D的层数

'meta_layer_size':

'hidden_size_g':

'hidden_size_d':

'biscale_slow_layer_ticks':

'multiscale':

'disable_feed_previous':

'pace_events':

'minibatch_d':

'unidirectional_d':

'feature_matching':

'composer':选取训练集中哪个作曲家的风格来进行训练,如巴赫 贝多芬......

do-not-redownload.txt存在,则不再下载新的midi文件

read_data函数读出的格式为[genre, composer, song_data]

这里组织了一个sources列表,键值为风格,艺术家

用python-midi读出midi_pattern后,遍历每一个track的每一个event,通过NoteOnEvent和NoteOffEvent记录每一个note的四个维度数值:

TICKS_FROM_PREV_START = 0
LENGTH = 1
FREQ = 2
VELOCITY = 3

最后,一首歌的所有的note被汇总到一个song_data的list中去了。每一个[genre, composer, song_data]代表一首歌的特征数据,这些数据被append到 loader.songs['validation'], loader.songs['test'] ,loader.songs['train']中去了。

创建模型训练时使用了l2正则项来避免过拟合:scope.set_regularizer(tf.contrib.layers.l2_regularizer(scale=FLAGS.reg_scale))

创建G,一个多层的LSTM:

输入噪声random_rnninputs的shape为[batch_size, songlength, int(FLAGS.random_input_scale*num_song_features)],然后转换为list

 
 

---恢复内容结束---

出处:arXiv: Artificial Intelligence, 2016(一年了还没中吗?)

Motivation

使用GAN+RNN来处理continuous sequential data,并训练生成古典音乐

Introduction

In this work, we investigate the feasibility of using adversarial training for a sequential model with continuous data, and evaluate it using classical music in freely available midi files.也就是利用GAN+RNN来处理midi file中的连续数据。RNN主要工作用于处理时序相关的自然语言,同时也被引入到了音乐生成的领域[1,2,3],but to our knowledge they always use a symbolic representation. In contrast,our work demonstrates how one can train a highly flexible and expressive model with fully continuous sequence data for tone lengths, frequencies, intensities, and timing.作者还刻意提到了LapGAN实现coarse-to-fine的图片生成过程(个人思考:对音乐生成很有启发,包括利用双层GAN来从caption生成image,一层用于生成低分辨率的粗线条色彩图片,一层用于生成细节,这些思路应该可以结合到音乐生成中去)。

Model

对抗网络中的G和D都是RNN模型,损失函数定义为

The input to each cell in G is a random vector, concatenated with the output of previous cell.D采用的是双向循环RNN(LSTM)。数据方面构建了一个tone length, frequency, intensity, and time的四元数组,数据可以表示出复调和弦polyphonous chords。

G和D的LSTM层数皆设置为2,BaseLine为去掉对抗性的单一的RNN生成网络。训练集Dataset是从网上down下来的标准midi格式的古典音乐文件,对所有的”note on“事件进行了记录的读取(包括该note的其他属性,时延,tone,强度等等),代码地址:https://github.com/olofmogren/c-rnn-gan

Training过程中使用了很多小技巧:

  • 使用L2 regularization对G和D的权重做正则化约束
  • The model was pretrained for 6 epochs with a squared error loss for predicting the next event in the
    training sequence
  • the input to each LSTM cell is a random vector v, concatenated with the output at previous time step. v is uniformly distributed in [0; 1]k, and k
    was chosen to be the number of features in each tone, 4.
  • 在预训练时,对采样的序列长度做了管理,从小序列开始逐渐加大,最后变成长序列
  • 采用了[4]中的freezen的trick,当D或G被训练得异常强大以至于对方梯度消失,无法正常进行训练时,对过于强大的一方实施冻结。这里采用的是A‘s training loss is less than 70% of the training loss of B时,冻结A
  • 采用了[4]中的feature matching的trick,将G的目标函数替换为使真假样本的feature差值最小化:

  其中,R是D的最后一层(激活函数logistic之前)输出。

评估标准

Polyphony 复音是否在同一时间点开始

Scale consistency were computed by counting the fraction of tones that were part of a standard scale, and reporting the number for the best matching such scale.(标准音程是什么鬼?)

Repetitions 小节重复数量

Tone span 最高音和最低音的音程统计

评估工具代码也放在github上面了

结论

第一例通过GAN对抗训练来生成音乐的paper。从人耳听觉的感受上来说,c-RNN-GAN生成的音乐完全不能和真实样本相提并论,应该是单纯地进行对抗训练,单轨音调,缺乏先验乐理知识的融入的缘故导致。

sample 试听:http://mogren.one/publications/2016/c-rnn-gan/

[1]Douglas Eck and Juergen Schmidhuber. Finding temporal structure in music: Blues improvisation
with lstm recurrent networks. In Neural Networks for Signal Processing, 2002. Proceedings of the
2002 12th IEEE Workshop on, pages 747–756. IEEE, 2002.

[2]Pascal Vincent Nicolas Boulanger-Lewandowski, Yoshua Bengio. Modeling temporal dependencies
in high-dimensional sequences: Application to polyphonic music generation and transcription. In
Proceedings of the 29th International Conference on Machine Learning (ICML), page 1159–1166,
2012.

[3]Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets
with policy gradient. arXiv preprint arXiv:1609.05473, 2016.

[4]Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in Neural Information Processing Systems,
pages 2226–2234, 2016.

代码分析

Restore保存的参数:

'num_layers_g' : RNN cell g的层数

'num_layers_d' :RNN Cell D的层数

'meta_layer_size':

'hidden_size_g':

'hidden_size_d':

'biscale_slow_layer_ticks':

'multiscale':

'disable_feed_previous':

'pace_events':

'minibatch_d':

'unidirectional_d':

'feature_matching':

'composer':选取训练集中哪个作曲家的风格来进行训练,如巴赫 贝多芬......

do-not-redownload.txt存在,则不再下载新的midi文件

read_data函数读出的格式为[genre, composer, song_data]

这里组织了一个sources列表,键值为风格,艺术家

用python-midi读出midi_pattern后,遍历每一个track的每一个event,通过NoteOnEvent和NoteOffEvent记录每一个note的四个维度数值:

TICKS_FROM_PREV_START = 0
LENGTH = 1
FREQ = 2
VELOCITY = 3

最后,一首歌的所有的note被汇总到一个song_data的list中去了。每一个[genre, composer, song_data]代表一首歌的特征数据,这些数据被append到 loader.songs['validation'] loader.songs['test'] loader.songs['train']中去了。

对于待训练的placeholder数据有:

self._input_songdata = tf.placeholder(shape=[batch_size, songlength, num_song_features], dtype=data_type())
self._input_metadata = tf.placeholder(shape=[batch_size, num_meta_features], dtype=data_type())
 
songdata_inputs将_input_songdata转成songlength个tensor的list,shape为[batch_size,num_song_features](这里用unstack要方便点吧,待测试):
songdata_inputs = [tf.squeeze(input_, [1])
for input_ in tf.split(self._input_songdata, songlength, 1)]
 

创建模型训练时使用了l2正则项来避免过拟合:scope.set_regularizer(tf.contrib.layers.l2_regularizer(scale=FLAGS.reg_scale))

创建G的LSTM网络:

输入噪声random_rnninputs的shape为[batch_size, songlength, int(FLAGS.random_input_scale*num_song_features)],然后转换为list(unstack?)

对G进行RNN的分步训练过程,每个循环是一步,输入为噪音random_rnninput和上一步的输出generated_point(两者concat为一个[batch_size,2*num_song_features]的tensor,第一步输出的初始化从均匀分布中采样)

对G还有个pretraining的过程,输入为噪音random_rnninputs和真实的sample songdata_input[i]

针对G的pretraining的loss是L2距离,注意这里的链表stack和[1,0,2]转置:

self.rnn_pretraining_loss = tf.reduce_mean(tf.squared_difference(x=tf.transpose(tf.stack(self._generated_features_pretraining), perm=[1, 0, 2]), y=self._input_songdata))

并加上一个正则项防止过拟合:

self.rnn_pretraining_loss = self.rnn_pretraining_loss+reg_loss
 
D采用了多(双)层双向LSTM,由于版本问题,我改写了一个多层lstm的接口:

要注意的是(1)由于bidirectional_dynamic_rnn每构建一次就会自动在名字空间中序号+1,所以用层数名来限定了scope(折腾了一天,是我菜还是tf太坑?)

(2)每次的输入_inputs需要把output中包含了bw和fw的tuple元组concat起来,每个tensor的shape为[batch_size,song_length,ouput_dim],其中output_dim和lstm隐层单元数量(状态数量)

一致,合并后shape为[batch_size,song_length,2×ouput_dim]

随后D将双向LSTM的输出全连接(output num = 1)并sigmoid映射为真假概率,同时输出output作为features,参与到feature loss的计算中去。

loss计算:

 
 
 

《C-RNN-GAN: Continuous recurrent neural networks with adversarial training》论文笔记的更多相关文章

  1. 《Vision Permutator: A Permutable MLP-Like ArchItecture For Visual Recognition》论文笔记

    论文题目:<Vision Permutator: A Permutable MLP-Like ArchItecture For Visual Recognition> 论文作者:Qibin ...

  2. [place recognition]NetVLAD: CNN architecture for weakly supervised place recognition 论文翻译及解析(转)

    https://blog.csdn.net/qq_32417287/article/details/80102466 abstract introduction method overview Dee ...

  3. 论文笔记系列-Auto-DeepLab:Hierarchical Neural Architecture Search for Semantic Image Segmentation

    Pytorch实现代码:https://github.com/MenghaoGuo/AutoDeeplab 创新点 cell-level and network-level search 以往的NAS ...

  4. 论文笔记——Rethinking the Inception Architecture for Computer Vision

    1. 论文思想 factorized convolutions and aggressive regularization. 本文给出了一些网络设计的技巧. 2. 结果 用5G的计算量和25M的参数. ...

  5. 论文笔记:Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells

    Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells 2019-04- ...

  6. 论文笔记:ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware

    ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware 2019-03-19 16:13:18 Pape ...

  7. 论文笔记:DARTS: Differentiable Architecture Search

    DARTS: Differentiable Architecture Search 2019-03-19 10:04:26accepted by ICLR 2019 Paper:https://arx ...

  8. 论文笔记:Progressive Neural Architecture Search

    Progressive Neural Architecture Search 2019-03-18 20:28:13 Paper:http://openaccess.thecvf.com/conten ...

  9. 论文笔记:Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation

    Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation2019-03-18 14:4 ...

  10. 论文笔记系列-DARTS: Differentiable Architecture Search

    Summary 我的理解就是原本节点和节点之间操作是离散的,因为就是从若干个操作中选择某一个,而作者试图使用softmax和relaxation(松弛化)将操作连续化,所以模型结构搜索的任务就转变成了 ...

随机推荐

  1. POJ 1741 树上 点的 分治

    题意就是求树上距离小于等于K的点对有多少个 n2的算法肯定不行,因为1W个点 这就需要分治.可以看09年漆子超的论文 本题用到的是关于点的分治. 一个重要的问题是,为了防止退化,所以每次都要找到树的重 ...

  2. Thinkphp5学习 Windows下的安装

    方法一.通过官方网站直接下载: (1)下载地址:http://www.thinkphp.cn/down.html: (2)下载后,解压到web目录下: (3)访问:http://localhost/目 ...

  3. 从零开始写STL—哈希表

    static const int _stl_num_primes = 28; template<typename T, typename Hash = xhash<T>> cl ...

  4. Pick-up sticks--poj2653(判断两线段是否相交)

    http://poj.org/problem?id=2653 题目大意:有n根各种长度的棍   一同洒在地上 求在最上面的棍子有那几个 分析:  我刚开始想倒着遍历  因为n是100000   想着会 ...

  5. 最长上升子序列(LIS)长度的O(nlogn)算法

    最长上升子序列(LIS)的典型变形,熟悉的n^2的动归会超时.LIS问题可以优化为nlogn的算法.定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则记录最小的那个最末元素 ...

  6. final finally finalize 区别及用法

    final 1,final修饰的class,代表不可以继承扩展. 2.final的方法也是不可以重写的. 3.final修饰的变量是不可以修改的.这里所谓的不可修改对于基本类型来来,的确是不可以修改. ...

  7. "格式太旧或是类型库无效。 (异常来自 HRESULT:0x80028019 (TYPE_E_UNSUPFORMAT))"

    错误提示内容: “System.Runtime.InteropServices.COMException (0x80028019): 格式太旧或是类型库无效. (异常来自 HRESULT:0x8002 ...

  8. AE的Annotation学习摘记

    http://xg-357.blog.163.com/blog/static/36263124201151763512894/ IFeatureWorkspaceAnno pFWSAnno = (IF ...

  9. Bag-of-words模型、TF-IDF模型

    Bag-of-words model (BoW model) 最早出现在NLP和IR(information retrieval)领域. 该模型忽略掉文本的语法和语序, 用一组无序的单词(words) ...

  10. 公布Java桌面程序

    我拿了一份桌面工具的开源码,修改动改,在elipse上执行.感觉良好.但到了公布应用程序,就傻眼了. 我竟然不知道咋公布! 呵呵,不愧是Java小白. 假设是微软阵营,直接就编译成exe了. 但jav ...