#include<iostream>
#include<string.h>
#include<stack>
using namespace std;
typedef struct BTree
{
int val;
struct BTree *left,*right;
}BTree;
class Tree
{
public:
BTree *create_node(int level,string pos);
void PreOrder(BTree *t); //先序遍历
void InOrder(BTree *t); //中序遍历
void PostOrder(BTree *t); //后序遍历
void NonRecursivePreOrder(BTree*t); //非递归前序遍历
void NonRecursiveInOrder(BTree*t); //非递归中序遍历
void NonRecursivePostOrder(BTree*t);//非递归后序遍历
BTree *root;
};
BTree* Tree::create_node(int level,string pos)
{
int data;
BTree *node = new BTree;
int a[]={,,,,,,,,,,,,,,,,,,};
static int t=;
cout<<"please enter data:level "<<level<<" "<<pos<<"--->值为:"<<a[t]<<endl;
data=a[t++];
if(data == )
{
return NULL;
}
node->val= data;
node->left = create_node(level+,"left");
node->right= create_node(level+,"right");
return node;
} void Tree::PreOrder(BTree *t)
{
if(t)
{
cout<<t->val<<" ";;
PreOrder(t->left);
PreOrder(t->right);
}
} void Tree::InOrder(BTree *t)
{
if(t)
{
InOrder(t->left);
cout<<t->val<<" ";;
InOrder(t->right);
}
} void Tree::PostOrder(BTree *t)
{
if(t)
{
PostOrder(t->left);
PostOrder(t->right);
cout<<t->val<<" ";
}
}
void Tree::NonRecursivePreOrder(BTree*t)
{
if(t==NULL)
return;
stack<BTree*>s;
BTree *p;
p=t;
while(p||!s.empty())
{
if(p)
{
cout<<p->val<<" ";
s.push(p);
p=p->left;
}
else{
p=s.top();
p=p->right;
s.pop();
}
}
}
void Tree::NonRecursiveInOrder(BTree*t)
{
if(t==NULL)
return;
stack<BTree*>s;
BTree*p;
p=t;
while(p||!s.empty())
{
if(p)
{
s.push(p);
p=p->left;
}
else
{
p=s.top();
cout<<p->val<<" ";
p=p->right;
s.pop();
}
}
}
void Tree::NonRecursivePostOrder(BTree*t)
{
if(t==NULL)
return;
stack<BTree*>s;
BTree*p=t;
BTree*r;
while(p||!s.empty())
{
if(p)
{
s.push(p);
p=p->left;
}
else
{
p=s.top();
if(p->right&&p->right!=r)
{
p=p->right;
s.push(p);
p=p->left;
}
else
{
cout<<p->val<<" ";
r=p;
s.pop();
p=NULL;
}
}
} } int main()
{
Tree tree;
tree.root = tree.create_node(,"root");
cout<<"Pre"<<endl;
tree.PreOrder(tree.root);
cout<<endl;
cout<<"非递归前序遍历"<<endl;
tree.NonRecursivePreOrder(tree.root);
cout<<endl;
cout<<"In"<<endl;
tree.InOrder(tree.root);
cout<<endl;
cout<<"非递归中序遍历"<<endl;
tree.NonRecursiveInOrder(tree.root);
cout<<endl;
cout<<"Post"<<endl;
tree.PostOrder(tree.root);
cout<<endl;
cout<<"非递归后序遍历"<<endl;
tree.NonRecursivePostOrder(tree.root);
return ;
}

结果:

please enter data:level  root--->值为:
please enter data:level left--->值为:
please enter data:level left--->值为:
please enter data:level left--->值为:
please enter data:level left--->值为:
please enter data:level right--->值为:
please enter data:level right--->值为:
please enter data:level left--->值为:
please enter data:level right--->值为:
please enter data:level right--->值为:
please enter data:level left--->值为:
please enter data:level right--->值为:
please enter data:level right--->值为:
please enter data:level left--->值为:
please enter data:level left--->值为:
please enter data:level right--->值为:
please enter data:level right--->值为:
please enter data:level left--->值为:
please enter data:level right--->值为:
Pre 非递归前序遍历 In 非递归中序遍历 Post 非递归后序遍历

C++实现二叉树(建树,前序,中序,后序)递归和非递归实现的更多相关文章

  1. (原)neuq oj 1022给定二叉树的前序遍历和后序遍历确定二叉树的个数

    题目描述 众所周知,遍历一棵二叉树就是按某条搜索路径巡访其中每个结点,使得每个结点均被访问一次,而且仅被访问一次.最常使用的有三种遍历的方式: 1.前序遍历:若二叉树为空,则空操作:否则先访问根结点, ...

  2. POJ 2255 Tree Recovery——二叉树的前序遍历、后序遍历、中序遍历规则(递归)

    1.前序遍历的规则:(根左右) (1)访问根节点 (2)前序遍历左子树 (3)前序遍历右子树 对于图中二叉树,前序遍历结果:ABDECF 2.中序遍历的规则:(左根右) (1)中序遍历左子树 (2)访 ...

  3. 分别求二叉树前、中、后序的第k个节点

    一.求二叉树的前序遍历中的第k个节点 //求先序遍历中的第k个节点的值 ; elemType preNode(BTNode *root,int k){ if(root==NULL) return ' ...

  4. 玩透二叉树(Binary-Tree)及前序(先序)、中序、后序【递归和非递归】遍历

    基础预热: 结点的度(Degree):结点的子树个数:树的度:树的所有结点中最大的度数:叶结点(Leaf):度为0的结点:父结点(Parent):有子树的结点是其子树的根节点的父结点:子结点/孩子结点 ...

  5. 算法进阶面试题03——构造数组的MaxTree、最大子矩阵的大小、2017京东环形烽火台问题、介绍Morris遍历并实现前序/中序/后序

    接着第二课的内容和带点第三课的内容. (回顾)准备一个栈,从大到小排列,具体参考上一课.... 构造数组的MaxTree [题目] 定义二叉树如下: public class Node{ public ...

  6. 给出 中序&后序 序列 建树;给出 先序&中序 序列 建树

    已知 中序&后序  建立二叉树: SDUT 1489 Description  已知一棵二叉树的中序遍历和后序遍历,求二叉树的先序遍历 Input  输入数据有多组,第一行是一个整数t (t& ...

  7. 二叉树 遍历 先序 中序 后序 深度 广度 MD

    Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...

  8. 前序+中序->后序 中序+后序->前序

    前序+中序->后序 #include <bits/stdc++.h> using namespace std; struct node { char elem; node* l; n ...

  9. SDUT OJ 数据结构实验之二叉树八:(中序后序)求二叉树的深度

    数据结构实验之二叉树八:(中序后序)求二叉树的深度 Time Limit: 1000 ms Memory Limit: 65536 KiB Submit Statistic Discuss Probl ...

  10. SDUT-2804_数据结构实验之二叉树八:(中序后序)求二叉树的深度

    数据结构实验之二叉树八:(中序后序)求二叉树的深度 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 已知一颗二叉树的中序 ...

随机推荐

  1. bzoj 1701 [Usaco2007 Jan]Cow School牛学校

    [Usaco2007 Jan]Cow School牛学校 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 175  Solved: 83[Submit][S ...

  2. 【BZOJ1403】Divisibility Testing(数论)

    题意: 思路: #include<cstdio> #include<cstdlib> #include<algorithm> #include<map> ...

  3. Netty 4.0 新的特性及需要注意的地方

    Netty 4.0 新的特性及需要注意的地方 这篇文章和你一起过下Netty的主发行版本的一些显著的改变和新特性,让你在把你的应用程序转换到新版本的时候有个概念. 项目结构改变 Netty的包名从or ...

  4. python之-- 异常

    异常处理: 语法:try: codeexcept (KeyError..可以写多个) as e: error为抓取的多个错误提示,e为错误信息 print(e) # 打印错误信息except (Ind ...

  5. 51 Nod 1244 莫比乌斯函数前n项和

    积性函数前n项和必看好文 https://blog.csdn.net/skywalkert/article/details/50500009 递归计算的时候要用map记忆化一下,前面的打表会比较快一点 ...

  6. 从零开始写STL-二叉搜索树

    二叉查找树(Binary Search Tree),(又:二叉搜索树,二叉排序树)它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若它的 ...

  7. HDU 5668 Circle

    中国剩余定理. 可以手动模拟一下每一次开始的人的编号和结束的人的编号. 每次删掉一个人,对剩下的人重新编号. 这样一次模拟下来,可以得到n个方程 形如:(u[i]+k)%(n-i+1)=v[i] 化简 ...

  8. HDU 5665 Lucky

    看有没有0和1,都有的时候是YES,否则是NO #include<cstdio> #include<cstring> #include<cmath> #includ ...

  9. Linux 特殊文档说明

    目录 /usr/share/man 目录 /usr/share/doc /etc/passwd 文件 /etc/shadow 文件 /etc/group 文件 /usr/share/man 目录 当我 ...

  10. [RxJS] Implement the `map` Operator from Scratch in RxJS

    While it's great to use the RxJS built-in operators, it's also important to realize you now have the ...