原来我一开始以为的\( O(n^2) \)是调和级数\( O(nlog_2n) \)的!

首先枚举猴王的桃子个数\( x \),然后使用容斥原理,枚举有至少\( k \)个不满足的条件,那么这\( k \)个不满足的条件得组合个数为\( C_{m-1}^{k} \),这\( k \)个不满足的条件每个至少是\( x+1 \),在总的桃子个数中去掉不满足条件的\( k \)个\( x+1 \),然后在剩下的桃子中使用隔板法,方案数为\( C_{n-(k+1)*x+m-2}^{m-2} \)

那么就可以得到公式:

\[ans=\sum_{x=1}^{x<=n,x>\frac{n-x}{m-1}}(\sum_{k=0}^{n-(k+1)*x\geq 0}((-1)^k*C_{m-1}^{k}*C_{n-(k+1)*x+m-2}^{m-2}))
\]

关于这个的复杂度呢看似平方实则是调和级数\( O(nlog_2n) \)的……但是我不太会算啊据说内层的k一共有n/x种取值

#include<iostream>
#include<cstdio>
using namespace std;
const long long N=200005,mod=1e9+7;
long long T,n,m,inv[N],fac[N],ans;
long long ksm(long long a,long long b)
{
long long r=1ll;
while(b)
{
if(b&1)
r=r*a%mod;
a=a*a%mod;
b>>=1;
}
return r;
}
long long C(long long n,long long m)
{
return fac[n]*inv[n-m]%mod*inv[m]%mod;
}
int main()
{
fac[0]=1;
for(int i=1;i<=N-5;i++)
fac[i]=fac[i-1]*i%mod;
inv[N-5]=ksm(fac[N-5],mod-2);
for(int i=N-6;i>=0;i--)
inv[i]=inv[i+1]*(i+1)%mod;
scanf("%lld",&T);
while(T--)
{
scanf("%lld%lld",&n,&m);
if(m==1||n==1)
{
puts("1");
continue;
}
ans=0ll;
for(int x=1;x<=n;x++)
if(x>(n-x)/(m-1))
for(int k=0;n-(k+1)*x>=0;k++)
ans=(ans+((k&1)?-1:1)*C(m-1,k)*C(n-(k+1)*x+m-2,m-2))%mod;
printf("%lld\n",(ans%mod+mod)%mod);
}
return 0;
}

hdu 5201 The Monkey King【容斥原理+组合数学】的更多相关文章

  1. HDU - 1512  Monkey King

    Problem Description Once in a forest, there lived N aggressive monkeys. At the beginning, they each ...

  2. HDU - 5201 :The Monkey King (组合数 & 容斥)

    As everyone known, The Monkey King is Son Goku. He and his offspring live in Mountain of Flowers and ...

  3. 数据结构(左偏树):HDU 1512 Monkey King

    Monkey King Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tota ...

  4. ZOJ 2334 Monkey King

    并查集+左偏树.....合并的时候用左偏树,合并结束后吧父结点全部定成树的根节点,保证任意两个猴子都可以通过Find找到最厉害的猴子                       Monkey King ...

  5. P1456 Monkey King

    题目地址:P1456 Monkey King 一道挺模板的左偏树题 不会左偏树?看论文打模板,完了之后再回来吧 然后你发现看完论文打完模板之后就可以A掉这道题不用回来了 细节见代码 #include ...

  6. Monkey King(左偏树 可并堆)

    我们知道如果要我们给一个序列排序,按照某种大小顺序关系,我们很容易想到优先队列,的确很方便,但是优先队列也有解决不了的问题,当题目要求你把两个优先队列合并的时候,这就实现不了了 优先队列只有插入 删除 ...

  7. 【bzoj4710】[Jsoi2011]分特产 容斥原理+组合数学

    题目描述 JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望任何一个同学因 ...

  8. 1512 Monkey King

    Monkey King Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tota ...

  9. [luogu5339] [TJOI2019]唱、跳、rap和篮球(容斥原理+组合数学)(不用NTT)

    [luogu5339] [TJOI2019]唱.跳.rap和篮球(容斥原理+组合数学)(不用NTT) 题面 略 分析 首先考虑容斥,求出有i堆人讨论的方案. 可以用捆绑法,把每堆4个人捆绑成一组,其他 ...

随机推荐

  1. 0c-适配 iOS 11

    参考路径:https://mp.weixin.qq.com/s?__biz=MzA3NTYzODYzMg==&mid=2653579210&idx=1&sn=d5ea8d46c ...

  2. Sigar 编译笔记

    https://blog.csdn.net/zw3413/article/details/79482438

  3. Django学习之 - 基础模板语言

    模板语言if/else/endif {% if today_is_weekend %} <p>Welcome to the weekend!</p> {% else %} &l ...

  4. mysql中如何查询最近24小时、top n查询

    MySQL中如何查询最近24小时. where visittime >= NOW() - interval 1 hour; 昨天. where visittime between CURDATE ...

  5. firedac数据集的序列和还原

    procedure TForm1.Button1Click(Sender: TObject);var stream, stream2: TMemoryStream; buf: TBytes;begin ...

  6. 【c++】【转】结构体字节对齐

    http://www.cnblogs.com/heyonggang/archive/2012/12/11/2812304.html

  7. 【c++】拷贝控制具体分析

    我们可以定义拷贝操作,使类的行为看起来像一个值或者像一个指针,这取决于如何拷贝指针成员. 当我们拷贝一个像值的对象时,副本和原对象是完全独立的,改变副本不会对原对象有任何影响,反之亦然.标准库容器和s ...

  8. 【Mongodb教程 第十一课 】MongoDB 聚合

    聚合操作过程中的数据记录和计算结果返回.聚合操作分组值从多个文档,并可以执行各种操作,分组数据返回单个结果.在SQL COUNT(*)和group by 相当于MongoDB的聚集. aggregat ...

  9. Linux环境搭建:1. 安装VMware

    我家淘宝店,主要协助同学做毕业设计:https://shop104550034.taobao.com/?spm=2013.1.1000126.d21.pPCzDZ 1. 下载VMware 能够到我的3 ...

  10. HTML5_路径

    <!DOCTYPE html> <hmtl> <html  lang="zh-cn"> <head> <meta charse ...