Unsupervised deep embedding for clustering analysis

偶然发现这篇发在ICML2016的论文,它主要的关注点在于unsupervised deep embedding。据我所了解的,Unsupervised 学习是deep learning的一个难点,毕竟deep network这种非常复杂的非线性映射,暂时的未知因素太多,可能在原来的domain有clustering的特征数据经过nonlinear映射之后,就变得不再clustering了。

这篇论文受t-SNE的启发,优化的目标是两个分布之间的KL距离。假设deep embedding之后的两个点 和 ,其中是第个类的centroid。于是,similarity 的measure为

也可以认为是 属于 的概率。

假设此时一个目标分布,则 。优化的过程和普通的BP算法一样,(1)通过BP算法优化deep network的参数,即计算。(2)通过计算梯度来调整cluster的centroid,但是否这类centroid的调整也需要乘上一个学习率呢?

此外,一个重点的问题是潜在目标分布的构造。Paper里给出了三个标准,我觉得这三个标准确实挺有意义的:(1)对预测效果可以strengthen(2)对于一些高概率被标注某个cluster的点,给予更多的权重(3)归一化每个点对于每个centroid用于计算loss函数时候的贡献,避免一些大的cluster扭曲了整个feature space。构造如下,

其中,。对以上三个标准说一说自己的理解,不一定准确。(1)对于第一点,对于某个明显更靠近类的point,它比其他point离得除类以外更远,这个点的也更高,而且也可能会更高(2)平方项的应用使得小的更加小了,即emphasis更小。同时,当较高,在 的所有点中, 也会有相对高的值。(3)对于某些大的cluster,可能总和更大,反而最终更小,而对于小的cluster,使得更大。最终把一个点push到另一个小cluster。

直觉上说,概率分布的初始化的正确性很大程度影响的算法最终的结果,首先因为这不是一个真实的分布,而deep network没有一个很好的初始化很难在另一个domain 保持cluster的结构。而section 5.1 的结果显示,对于high confidence的点,sample也变得更加canonical,如图越高confidence越明显是“5”的字样,而对于梯度的贡献也越来越大,即说明初始化概率分布也是接近正确的。

网络的初始化和SAE(栈autoencoder)一样,采用greedy training的方式训练每一层,然后再微调整个网络。而初始化cluster的选择,则通过在embedding上perform k means clustering 算法得到。

【CV论文阅读】Unsupervised deep embedding for clustering analysis的更多相关文章

  1. 论文解读DEC《Unsupervised Deep Embedding for Clustering Analysis》

    Junyuan Xie, Ross B. Girshick, Ali Farhadi2015, ICML1243 Citations, 45 ReferencesCode:DownloadPaper: ...

  2. PP: Unsupervised deep embedding for clustering analysis

    Problem: unsupervised clustering represent data in feature space; learn a non-linear mapping from da ...

  3. 【论文阅读】Deep Adversarial Subspace Clustering

    导读: 本文为CVPR2018论文<Deep Adversarial Subspace Clustering>的阅读总结.目的是做聚类,方法是DASC=DSC(Deep Subspace ...

  4. 论文阅读 DynGEM: Deep Embedding Method for Dynamic Graphs

    2 DynGEM: Deep Embedding Method for Dynamic Graphs link:https://arxiv.org/abs/1805.11273v1 Abstract ...

  5. 论文阅读 | Clustrophile 2: Guided Visual Clustering Analysis

    论文地址 论文视频 左侧边栏可以导入数据,或者打开以及前保存的结果.右侧显示了所有的日志,可以轻松回到之前的状态,视图的主区域上半部分是数据,下半部分是聚类视图. INTRODUCTION 数据聚类对 ...

  6. 【CV论文阅读】Deep Linear Discriminative Analysis, ICLR, 2016

    DeepLDA 并不是把LDA模型整合到了Deep Network,而是利用LDA来指导模型的训练.从实验结果来看,使用DeepLDA模型最后投影的特征也是很discriminative 的,但是很遗 ...

  7. 论文解读《Deep Attention-guided Graph Clustering with Dual Self-supervision》

    论文信息 论文标题:Deep Attention-guided Graph Clustering with Dual Self-supervision论文作者:Zhihao Peng, Hui Liu ...

  8. 【论文阅读】Deep Clustering for Unsupervised Learning of Visual Features

    文章:Deep Clustering for Unsupervised Learning of Visual Features 作者:Mathilde Caron, Piotr Bojanowski, ...

  9. 【CV论文阅读】生成式对抗网络GAN

    生成式对抗网络GAN 1.  基本GAN 在论文<Generative Adversarial Nets>提出的GAN是最原始的框架,可以看成极大极小博弈的过程,因此称为“对抗网络”.一般 ...

随机推荐

  1. LOL喷子专用自动骂人工具,2018更新完整版!

    软件截图 软件说明: 先进入游戏 打开程序 Z开启/C关闭 下载地址:密码 yjnm

  2. (转)淘淘商城系列——使用maven tomcat插件启动聚合工程

    http://blog.csdn.net/yerenyuan_pku/article/details/72672389 上文我们一起学习了如何使用maven tomcat插件来启动web工程,本文我们 ...

  3. 【转】Google Chrome浏览器调试

    作为Web开发人员,我为什么喜欢Google Chrome浏览器 [原文地址:http://www.cnblogs.com/QLeelulu/archive/2011/08/28/2156402.ht ...

  4. 6-Java-C(无穷分数)

    题目描述: 无穷的分数,有时会趋向于固定的数字. 请计算[图1.jpg]所示的无穷分数,要求四舍五入,精确到小数点后5位,小数位不足的补0. 请填写该浮点数,不能填写任何多余的内容. 正确算法: 此题 ...

  5. Java SE、Java EE、Java ME 三者区别

    现在一个个来分析 1. Java SE(Java Platform,Standard Edition).Java SE 以前称为 J2SE.它允许开发和部署在桌面.服务器.嵌入式环境和实时环境中使用的 ...

  6. python __future__ 使用

    在开头加上from __future__ import print_function这句之后,即使在python2.X,使用print就得像python3.X那样加括号使用.python2.X中pri ...

  7. Java使用JNA方式调用DLL(动态链接库)(原创,装载请注明出处)

    Java使用JNA调用DLL 1.准备 1.JDK环境 2.Eclipse 3.JNA包 下载JNA包: (1).JNA的Github:https://github.com/java-native-a ...

  8. [SCOI2011]棘手的操作(可并堆/并查集/线段树)

    我懒死了 过于棘手 但这题真的很水的说 毕竟写啥都能过 常见思路: ①:由于不强制在线,所以重新编号之后线段树维护 ②:用各种可以高速合并的数据结构,比如可并堆,可并平衡树啥的 讲一种无脑算法: 对于 ...

  9. 笔试算法题(47):简介 - B树 & B+树 & B*树

    B树(B-Tree) 1970年由R. Bayer和E. Mccreight提出的一种适用于外查找的树,一种由BST推广到多叉查找的平衡查找树,由于磁盘的操作速度远小于存储器的读写速度,所以要求在尽量 ...

  10. 使用ajax解析后台json数据时:Unexpected token o in JSON at position 1

    json数据解析异常 今天在做json数据的时候,出现了如下错误,说是解析异常. VM1584:1 Uncaught SyntaxError: Unexpected token o in JSON a ...