【CV论文阅读】Unsupervised deep embedding for clustering analysis
Unsupervised deep embedding for clustering analysis
偶然发现这篇发在ICML2016的论文,它主要的关注点在于unsupervised deep embedding。据我所了解的,Unsupervised 学习是deep learning的一个难点,毕竟deep network这种非常复杂的非线性映射,暂时的未知因素太多,可能在原来的domain有clustering的特征数据经过nonlinear映射之后,就变得不再clustering了。
这篇论文受t-SNE的启发,优化的目标是两个分布之间的KL距离。假设deep embedding之后的两个点
和
,其中
是第
个类的centroid。于是,similarity 的measure为

也可以认为是
属于
的概率。
假设此时一个目标分布
,则
。优化的过程和普通的BP算法一样,(1)通过BP算法优化deep network的参数,即计算
。(2)通过计算梯度
来调整cluster的centroid,但是否这类centroid的调整也需要乘上一个学习率呢?
此外,一个重点的问题是潜在目标分布的构造。Paper里给出了三个标准,我觉得这三个标准确实挺有意义的:(1)对预测效果可以strengthen(2)对于一些高概率被标注某个cluster的点,给予更多的权重(3)归一化每个点对于每个centroid用于计算loss函数时候的贡献,避免一些大的cluster扭曲了整个feature space。构造如下,

其中,
。对以上三个标准说一说自己的理解,不一定准确。(1)对于第一点,对于某个明显更靠近
类的point,它比其他point离得除
类以外更远,这个点的
也更高,而且
也可能会更高(2)平方项的应用使得小的更加小了,即emphasis更小。同时,当
较高,在
的所有点中,
也会有相对高的值。(3)对于某些大的cluster,可能总和
更大,反而最终
更小,而对于小的cluster,使得
更大。最终把一个点push到另一个小cluster。
直觉上说,概率分布
的初始化的正确性很大程度影响的算法最终的结果,首先因为这不是一个真实的分布,而deep network没有一个很好的初始化很难在另一个domain 保持cluster的结构。而section 5.1 的结果显示,对于high confidence的点,sample也变得更加canonical,如图越高confidence越明显是“5”的字样,而对于梯度的贡献也越来越大,即说明初始化概率分布
也是接近正确的。

网络的初始化和SAE(栈autoencoder)一样,采用greedy training的方式训练每一层,然后再微调整个网络。而初始化cluster的选择,则通过在embedding上perform k means clustering 算法得到。
【CV论文阅读】Unsupervised deep embedding for clustering analysis的更多相关文章
- 论文解读DEC《Unsupervised Deep Embedding for Clustering Analysis》
Junyuan Xie, Ross B. Girshick, Ali Farhadi2015, ICML1243 Citations, 45 ReferencesCode:DownloadPaper: ...
- PP: Unsupervised deep embedding for clustering analysis
Problem: unsupervised clustering represent data in feature space; learn a non-linear mapping from da ...
- 【论文阅读】Deep Adversarial Subspace Clustering
导读: 本文为CVPR2018论文<Deep Adversarial Subspace Clustering>的阅读总结.目的是做聚类,方法是DASC=DSC(Deep Subspace ...
- 论文阅读 DynGEM: Deep Embedding Method for Dynamic Graphs
2 DynGEM: Deep Embedding Method for Dynamic Graphs link:https://arxiv.org/abs/1805.11273v1 Abstract ...
- 论文阅读 | Clustrophile 2: Guided Visual Clustering Analysis
论文地址 论文视频 左侧边栏可以导入数据,或者打开以及前保存的结果.右侧显示了所有的日志,可以轻松回到之前的状态,视图的主区域上半部分是数据,下半部分是聚类视图. INTRODUCTION 数据聚类对 ...
- 【CV论文阅读】Deep Linear Discriminative Analysis, ICLR, 2016
DeepLDA 并不是把LDA模型整合到了Deep Network,而是利用LDA来指导模型的训练.从实验结果来看,使用DeepLDA模型最后投影的特征也是很discriminative 的,但是很遗 ...
- 论文解读《Deep Attention-guided Graph Clustering with Dual Self-supervision》
论文信息 论文标题:Deep Attention-guided Graph Clustering with Dual Self-supervision论文作者:Zhihao Peng, Hui Liu ...
- 【论文阅读】Deep Clustering for Unsupervised Learning of Visual Features
文章:Deep Clustering for Unsupervised Learning of Visual Features 作者:Mathilde Caron, Piotr Bojanowski, ...
- 【CV论文阅读】生成式对抗网络GAN
生成式对抗网络GAN 1. 基本GAN 在论文<Generative Adversarial Nets>提出的GAN是最原始的框架,可以看成极大极小博弈的过程,因此称为“对抗网络”.一般 ...
随机推荐
- Java对Redis基本使用
1 引入jar包 java是通过Jedis对redis进行操作的,首先引入jedis.jar <dependency> <groupId>redis.clients</g ...
- Fragment中获取Activity的Context (转)
Fragment中获取Activity的Context时只需要this.getActivity()即可. 而不是许多人说的this.getActivity().getApplicationCo ...
- MVC学习(一)
http://www.cnblogs.com/QLeelulu/archive/2008/09/30/1302462.html
- 【VBA研究】如何用Base64 编解码方法实现简单的加解密
Base64编码的思想是是采用64个基本的ASCII码字符对数据进行重新编码,将数据变成字符串实现文本传输.由于编码简单,所以很容易实现,代码也是现成的.利用这个编码规则可以实现简单的加解密.编解码方 ...
- jquery 移动端 六位密码输入
<!DOCTYPE html> <html> <head> <script src="scripts/jquery-1.7.1.min.js&quo ...
- day25-2 OSI协议和socket抽象层
目录 OSI协议 物理层 数据链路层 以太网协议 Mac地址 广播地址 网络层 获取对方Mac地址(ARP协议) 传输层 TCP协议 UDP协议 应用层 socket抽象层 OSI协议 互联网的本质就 ...
- JS的type类型为 text/template
JS标签中有时候会看见<script type="text/tmplate" >,大概就是一个放置模板的地方,而这些东西并不显示在页面 在js里面,经常需要使用js往页 ...
- JFinal怎么更改项目服务的端口
如图所示,运行时启动的端口是80,现在将它改成801: 可以在Debug configuration 或 Run configuration 弹出的窗口中配置,方法右击项目>properties ...
- pytorch学习 中 torch.squeeze() 和torch.unsqueeze()的用法
squeeze的用法主要就是对数据的维度进行压缩或者解压. 先看torch.squeeze() 这个函数主要对数据的维度进行压缩,去掉维数为1的的维度,比如是一行或者一列这种,一个一行三列(1,3)的 ...
- [Luogu] P1865 A % B Problem
题目描述 区间质数个数 输入输出格式 输入格式: 一行两个整数 询问次数n,范围m 接下来n行,每行两个整数 l,r 表示区间 输出格式: 对于每次询问输出个数 t,如l或r∉[1,m]输出 Cros ...