并不对劲的bzoj4804:欧拉心算
题目大意
\(t\)(\(t\leq5000\))组询问,每次询问给出\(n\)(\(n\leq10^7\)),求:
\]
题解
枚举gcd,原式变为:
\]
\]
发现\(\sum_{j=1}^{i}[gcd(i,j)=1] = \phi(i)\)(1)
那么将\(\sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{k}\rfloor}[gcd(i,j)=1]\)中\(i>j\)和\(i<j\)分开考虑,相当于是把(1)式算了两遍
但是\(i=j=1\)算重(chong二声)了,所以是两个(1)式-1
即\(\sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{k}\rfloor}[gcd(i,j)=1] = (\sum_{i=1}{\lfloor\frac{n}{k}\rfloor}2*\phi(i))-1\)
那么原式=\(\sum_{k=1}^{n}\phi(k)( (\sum_{i=1}{\lfloor\frac{n}{k}\rfloor}2*\phi(i))-1)\)
直接整除分块就行了
代码
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<iomanip>
#include<iostream>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#define rep(i,x,y) for(register int i=(x);i<=(y);++i)
#define dwn(i,x,y) for(register int i=(x);i>=(y);--i)
#define maxn 10000001
#define LL long long
#define lim (maxn-1)
using namespace std;
int read()
{
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)&&ch!='-')ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(isdigit(ch))x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return x*f;
}
void write(LL x)
{
if(x==0){putchar('0'),putchar('\n');return;}
int f=0;char ch[20];
if(x<0)putchar('-'),x=-x;
while(x)ch[++f]=x%10+'0',x/=10;
while(f)putchar(ch[f--]);
putchar('\n');
return;
}
int no[maxn],p[maxn],cnt,t,n;
LL phi[maxn],f[maxn];
int main()
{
no[1]=phi[1]=1;
rep(i,2,lim)
{
if(!no[i])phi[i]=i-1,p[++cnt]=i;
for(int j=1;j<=cnt&&i*p[j]<=lim;j++)
{
no[i*p[j]]=1;
if(i%p[j]==0){phi[i*p[j]]=phi[i]*p[j];break;}
phi[i*p[j]]=phi[i]*phi[p[j]];
}
}
rep(i,1,lim)phi[i]+=phi[i-1];
rep(i,1,lim)f[i]=phi[i]*2ll-1ll;
t=read();
while(t--)
{
n=read();LL ans=0;
for(int l=1,r=0;l<=n;l=r+1)
{
r=n/(n/l);
ans+=(phi[r]-phi[l-1])*f[n/l];
}
write(ans);
}
return 0;
}
并不对劲的bzoj4804:欧拉心算的更多相关文章
- BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)
一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...
- [BZOJ4804]欧拉心算
题面戳我 题意:求 \[\sum_{i=1}^{n}\sum_{j=1}^{n}\phi(\gcd(i,j))\] 多组数据,\(n\le10^7\). sol SBT 单组数据\(O(\sqrt n ...
- BZOJ4804: 欧拉心算(莫比乌斯反演 线性筛)
题意 求$$\sum_1^n \sum_1^n \phi(gcd(i, j))$$ $T \leqslant 5000, N \leqslant 10^7$ Sol 延用BZOJ4407的做法 化到最 ...
- bzoj4804: 欧拉心算 欧拉筛
题意:求\(\sum_{i=1}^n\sum_{j=1}^n\phi(gcd(i,j))\) 题解:\(\sum_{i==1}^n\sum_{j=1}^n\sum_{d=1}^n[gcd(i,j)== ...
- [BZOJ4804]欧拉心算:线性筛+莫比乌斯反演
分析 关于这道题套路到不能再套路了没什么好说的,其实发这篇博客的目的只是为了贴一个线性筛的模板. 代码 #include <bits/stdc++.h> #define rin(i,a,b ...
- 【bzoj4804】欧拉心算 解题报告
[bzoj4804]欧拉心算 Description 给出一个数字\(N\),计算 \[\sum_{i=1}^n\sum_{j=1}^n \varphi(\gcd(i,j))\] Input 第一行为 ...
- 【BZOJ4804】欧拉心算 莫比乌斯反演+线性筛
[BZOJ4804]欧拉心算 Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N<=10 ...
- BZOJ_4804_欧拉心算_欧拉函数
BZOJ_4804_欧拉心算_欧拉函数 Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N&l ...
- bzoj 4804 欧拉心算 欧拉函数,莫比乌斯
欧拉心算 Time Limit: 15 Sec Memory Limit: 256 MBSubmit: 408 Solved: 244[Submit][Status][Discuss] Descr ...
随机推荐
- dedecms--自定义session存值取值
最近在用用dedecms开发项目,开发项目中遇到需要通过session存储信息在其他页面调取使用,但是对dedecms里面自带的session存储使用不好,我需要存储的是用户登录的时候信息,于是我就使 ...
- SharedPreferences 存储数组+双击退出
public static void saveApkEnalbleArray(Context context,boolean[] booleanArray) { SharedPreferences p ...
- Linux主机被SSH精神病(Psychos)暴力攻破后成为肉鸡的攻防过程
近日公司局域网突然变得非常慢,上网受到很大影响,不仅仅是访问互联网慢,就连访问公司内部服务器都感到异常缓慢.于是对本局域网网关进行测试: $ ping 10.10.26.254 发现延时很大, ...
- Codeforces Round #512 (Div. 2, based on Technocup 2019 Elimination Round 1) E. Vasya and Good Sequences
题目链接 官网题解写的好清楚,和昨晚Aguin说的一模一样…… 这题只和每个数1的个数有关,设每个数1的个数的数组为$b$,就是首先一段如果是好的,要满足两个条件: 1.这一段$b$数组和为偶数,因为 ...
- LinkedList类的基本方法的用法
package cn.zmh.LinkedList; import java.util.Iterator; import java.util.LinkedList; public class Link ...
- 《深入理解mybatis原理》 MyBatis的二级缓存的设计原理
MyBatis的二级缓存是Application级别的缓存,它可以提高对数据库查询的效率,以提高应用的性能.本文将全面分析MyBatis的二级缓存的设计原理. 如上图所示,当开一个会话时,一个SqlS ...
- IIS Express 的怪毛病 vs2013本机调试
本机调试时,如果同一个项目有多个版本,同时debug,可能会串项目调试,造成不必要的困扰: 通常情况下是 IIS express的映射出现了问题: 解决方案: 1.打开目录:查看文件C:\Users\ ...
- Eclipse FindBugs的安装
原文:http://blog.sina.com.cn/s/blog_62186b460100l3mx.html 1安装:首先到官方网站下载最新版本FindBugs http://findbugs ...
- 伙伴算法与slab算法
伙伴算法: 1.将空闲页面分为m个组,第1组存储2^0个单位的内存块,,第2组存储2^1个单位的内存块,第3组存储2^2个单位的内存块,第4组存储2^3个单位的内存块,以此类推.直到m组. 2.每个组 ...
- postgresql 导出建表语句的方法-类似describe table
https://www.youtube.com/watch?v=PMfcsYzj-9M 这个视频不错, The Definitive Guide to Object-Oriented JavaScr ...