Description

Farmer John每年有很多栅栏要修理。他总是骑着马穿过每一个栅栏并修复它破损的地方。

John是一个与其他农民一样懒的人。他讨厌骑马,因此从来不两次经过一个栅栏。你必须编一个程序,读入栅栏网络的描述,并计算出一条修栅栏的路径,使每个栅栏都恰好被经过一次。John能从任何一个顶点(即两个栅栏的交点)开始骑马,在任意一个顶点结束。

每一个栅栏连接两个顶点,顶点用1到500标号(虽然有的农场并没有500个顶点)。一个顶点上可连接任意多(>=1)个栅栏。两顶点间可能有多个栅栏。所有栅栏都是连通的(也就是你可以从任意一个栅栏到达另外的所有栅栏)。

你的程序必须输出骑马的路径(用路上依次经过的顶点号码表示)。我们如果把输出的路径看成是一个500进制的数,那么当存在多组解的情况下,输出500进制表示法中最小的一个 (也就是输出第一位较小的,如果还有多组解,输出第二位较小的,等等)。

输入数据保证至少有一个解。

Input

第1行: 一个整数F(1 <= F <= 1024),表示栅栏的数目

第2到F+1行: 每行两个整数i, j(1 <= i,j <= 500)表示这条栅栏连接i与j号顶点。

Output

输出应当有F+1行,每行一个整数,依次表示路径经过的顶点号。注意数据可能有多组解,但是只有上面题目要求的那一组解是认为正确的。

Sample Input

9
1 2
2 3
3 4
4 2
4 5
2 5
5 6
5 7
4 6

Sample Output

1
2
3
4
2
5
4
6
5
7

说明

题目翻译来自NOCOW。

USACO Training Section 3.3

题解

欧拉路径的模板题了吧

预备知识:

欧拉回路:从一个点可以遍历整张图,最后回到原来的点

欧拉通路:从一个点可以遍历整张图,最后回不到原来的点

对于无向图而言:(大前提:图联通

欧拉回路:任意点的度数为偶 起点可随意

欧拉通路:有且仅有两个点度数为奇 在遍历时一定要从一个为奇的点到另一个为奇的点

对于有向图:(还是大前提图联通

欧拉回路:每个点入度==出度

欧拉通路:有且仅有一个点出度-入度==1 为起点;有且仅有一个点入度-出度==1 为终点; 其余的点出度==入度

然后这道题的解法和算法学习都借鉴了排名第一的题解Misaka_Azusa的题解

所以是Hierholzers算法啦!

双向存边,记录每个点的度。

从小到大扫一遍  找有没有度数为奇的点 若有则break,从当前点开始dfs(欧拉通路

如果所有点度为偶则从最小的点开始dfs(欧拉回路

 stack<int>st;
void dfs(int x)
{
for(int v=l;v<=r;++v)
if(tu[x][v])
{
tu[x][v]--;
tu[v][x]--;
dfs(v);
}
st.push(x);
return;
}

看代码然后强行理解应该就够了

然后对于stack 一开始自作聪明的成在开头直接输出QAQ

如果有一样的危险想法,讨论区给的这个样例还是蛮助于理解的


以下是全代码

 #include<iostream>
#include<cstdio>
#include<stack>
#include<cmath>
using namespace std;
int du[];
int tu[][];
int l,r;
stack<int>st;
void dfs(int x)
{
for(int v=l;v<=r;++v)
if(tu[x][v])
{
tu[x][v]--;
tu[v][x]--;
dfs(v);
}
st.push(x);
return;
}
int main()
{
int f;
scanf("%d",&f);
l=,r=;
for(int i=;i<=f;++i)
{
int x,y;
scanf("%d%d",&x,&y);
tu[x][y]++;
tu[y][x]++;
du[x]++;
du[y]++;
l=min(l,x);
l=min(l,y);
r=max(r,x);
r=max(r,y);
}
int s=l;
for(int i=l;i<=r;++i)
if(du[i]%==){s=i;break;}
dfs(s);
while(!st.empty())
{
printf("%d\n",st.top());
st.pop();
}
return ;
}

YJQ说这是集训队算法(逃

「USACO」「LuoguP2731」 骑马修栅栏 Riding the Fences(欧拉路径的更多相关文章

  1. 洛谷P2731 骑马修栅栏 Riding the Fences

    P2731 骑马修栅栏 Riding the Fences• o 119通过o 468提交• 题目提供者该用户不存在• 标签USACO• 难度普及+/提高 提交 讨论 题解 最新讨论 • 数据有问题题 ...

  2. 洛谷 P2731 骑马修栅栏 Riding the Fences 解题报告

    P2731 骑马修栅栏 Riding the Fences 题目背景 Farmer John每年有很多栅栏要修理.他总是骑着马穿过每一个栅栏并修复它破损的地方. 题目描述 John是一个与其他农民一样 ...

  3. 洛谷 P2731 骑马修栅栏 Riding the Fences

    P2731 骑马修栅栏 Riding the Fences 题目背景 Farmer John每年有很多栅栏要修理.他总是骑着马穿过每一个栅栏并修复它破损的地方. 题目描述 John是一个与其他农民一样 ...

  4. P2731 骑马修栅栏 Riding the Fences 题解(欧拉回路)

    题目链接 P2731 骑马修栅栏 Riding the Fences 解题思路 存图+简单\(DFS\). 坑点在于两种不同的输出方式. #include<stdio.h> #define ...

  5. USACO Section 3.3 骑马修栅栏 Riding the Fences

    题目背景 Farmer John每年有很多栅栏要修理.他总是骑着马穿过每一个栅栏并修复它破损的地方. 题目描述 John是一个与其他农民一样懒的人.他讨厌骑马,因此从来不两次经过一个栅栏.你必须编一个 ...

  6. P2731 骑马修栅栏 Riding the Fences

    题目描述 John是一个与其他农民一样懒的人.他讨厌骑马,因此从来不两次经过一个栅栏.你必须编一个程序,读入栅栏网络的描述,并计算出一条修栅栏的路径,使每个栅栏都恰好被经过一次.John能从任何一个顶 ...

  7. 骑马修栅栏 Riding the Fences

    题目背景 Farmer John每年有很多栅栏要修理.他总是骑着马穿过每一个栅栏并修复它破损的地方. 题目描述 John是一个与其他农民一样懒的人.他讨厌骑马,因此从来不两次经过一个栅栏.你必须编一个 ...

  8. LG2731 骑马修栅栏 Riding the Fences

    题意 John是一个与其他农民一样懒的人.他讨厌骑马,因此从来不两次经过一个栅栏.你必须编一个程序,读入栅栏网络的描述,并计算出一条修栅栏的路径,使每个栅栏都恰好被经过一次.John能从任何一个顶点( ...

  9. [USACO]骑马修栅栏 Riding the Fences

    题目链接 题目简述:欧拉回路,字典序最小.没什么好说的. 解题思路:插入边的时候,使用multiset来保证遍历出出答案的字典序最小. 算法模板:for(枚举边) 删边(无向图删两次) 遍历到那个点 ...

随机推荐

  1. java 文件复制操作

    本案例采用第三方 jar 包完成,commons-io-2.5.jar, 这个 jar 对文件操作非常方便,大家可以尝试使用一下. 这里贴一个简单的 demo 供大家使用 import java.io ...

  2. CodeChef - METEORAK Meteor

    Read problems statements in Mandarin Chineseand Russian. A meteor fell on Andrew's house. That's why ...

  3. GeoServer发布Heatmap

    转自原文 GeoServer发布Heatmap 百度等热力图是使用开源的heatmap.js做的,但是这种解决方案的缺陷是: 1 数据量大的话,从前端通过后台查询比较费时,比如arcserver默认设 ...

  4. Go -- 一致性哈希算法

    一致性哈希算法在1997年由麻省理工学院的Karger等人在解决分布式Cache中提出的,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用 ...

  5. Fragment 生命周期怎么来的?

    前言 Fragment对于 Android 开发人员来说一点都不陌生,由于差点儿不论什么一款 app 都大量使用 Fragment,所以 Fragment 的生命周期相信对于大家来说应该都非常清晰.但 ...

  6. QVector的内存分配策略

    我们都知道 STL std::vector 作为动态数组在所分配的内存被填满时.假设继续加入数据,std::vector 会另外申请一个大小当前容量两倍的区域(假设 n > size 则申请 n ...

  7. 通达OA 一些工作流调整后带来的后果及应对措施

    近期单位有个工作流须要改动,原因是最早设计时控件的字段设计不规范,控件直接使用了人员的名字来命名了.这不使用手机訪问时就出问题了,名字会直接显示出来,如今就须要进行调整. 调整初步有两个方案: 一是全 ...

  8. YII RBAC基于角色的访问控制

    基于角色的访问控制( Role-Based Access Control ),是一种简单的而又强大的集中访问控制.基于Yii Framework 的 authManager 组件实现了分等级的 RBA ...

  9. javascript判断一个变量或对象是否存在

    判断一个变量或对象是否存在,是一种常用的操作.我这里收集了几种. //1. 最常用的一种方法.if(typeof v == 'undefined'){ console.log("v is u ...

  10. HDOJ_ How can I read input data until the end of file ?

    Language C C++ Pascal To read numbers int n;while(scanf("%d", &n) != EOF){ ...} int n; ...