You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task. 
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.

All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.

You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.

You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

Input

The input consists of multiple data sets. Each data set is given in the following format.


x1 y1 z1 r1 
x2 y2 z2 r2 
... 
xn yn zn rn

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.

The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.

Each of x, y, z and r is positive and is less than 100.0.

The end of the input is indicated by a line containing a zero.

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.

Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

Sample Input

3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0

Sample Output

20.000
0.000
73.834
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iomanip>
using namespace std;
#define MAXN 101
#define INF 200.0
bool been[MAXN];
int n;
double g[MAXN][MAXN],lowcost[MAXN];
/*
最小生成树,如果D(a,b)<=ra+rb,那么g[a][b]=0
否则D(a,b)>ra+rb,g[a][b] = D(a,b)-ra-rb
*/
struct pos
{
double x,y,z,r;
}a[MAXN];
double D(int i,int j)
{
double dx = a[i].x-a[j].x,dy=a[i].y-a[j].y,dz=a[i].z-a[j].z;
return sqrt(dx*dx+dy*dy+dz*dz);
}
double Prim(int beg)
{
double ans = 0.0;
memset(been,false,sizeof(been));
for(int i=;i<n;i++)
{
lowcost[i] = g[beg][i];
}
been[beg] = true;
for(int i=;i<n;i++)
{
double Minc = INF;
int k = -;
for(int j=;j<n;j++)
{
if(!been[j]&&Minc>lowcost[j])
{
Minc = lowcost[j];
k = j;
}
}
if(k==-) return -;
been[k] = true;
ans+=Minc;
for(int j=;j<n;j++)
{
if(!been[j]&&g[k][j]<lowcost[j])
{
lowcost[j] = g[k][j];
}
}
}
return ans;
}
int main()
{
while(scanf("%d",&n),n)
{
for(int i=;i<n;i++)
{
cin>>a[i].x>>a[i].y>>a[i].z>>a[i].r;
}
for(int i=;i<n;i++)
{
for(int j=i+;j<n;j++)
{
double tmp = D(i,j);
if(tmp<=a[i].r+a[j].r)
g[i][j] = g[j][i] =0.0;
else
g[i][j] = g[j][i] = tmp-a[i].r-a[j].r;
}
g[i][i] = 0.0;
}
double ans = Prim();
cout<<fixed<<setprecision()<<ans<<endl;
}
return ;
}

最小生成树 C - Building a Space Station的更多相关文章

  1. (最小生成树) Building a Space Station -- POJ -- 2031

    链接: http://poj.org/problem?id=2031 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6011 ...

  2. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...

  3. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  4. POJ 2031:Building a Space Station 最小生成树

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6083   Accepte ...

  5. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

  6. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

  7. POJ 2031 Building a Space Station

    3维空间中的最小生成树....好久没碰关于图的东西了.....              Building a Space Station Time Limit: 1000MS   Memory Li ...

  8. POJ2031 Building a Space Station 2017-04-13 11:38 48人阅读 评论(0) 收藏

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 8572   Accepte ...

  9. Building a Space Station POJ - 2031

    Building a Space Station POJ - 2031 You are a member of the space station engineering team, and are ...

随机推荐

  1. jQuery——表单应用(2)

    多行文本框应用之高度变化 HTML: <!--表单-多行文本框应用-高度变化--> <!DOCTYPE html> <html> <head> < ...

  2. MyEclipse无法自动编译项目故障一例

    MyEclipse导入项目后发现无法自动编译,classes目录下没有编译的类. 尝试的解决方法: 1.刷新项目,失败: 2.project->clean-,失败: 3.关闭项目再次打开,失败: ...

  3. Android 性能优化(1)性能工具之「 lint 」 :Improving Your Code with lint:优化代码

    Improving Your Code with lint 1.See Also lint (reference) Using Android Annotations In addition to t ...

  4. 391 Perfect Rectangle 完美矩形

    有 N 个与坐标轴对齐的矩形, 其中 N > 0, 判断它们是否能精确地覆盖一个矩形区域.每个矩形用左下角的点和右上角的点的坐标来表示.例如, 一个单位正方形可以表示为 [1,1,2,2]. ( ...

  5. 389 Find the Difference 找不同

    给定两个字符串 s 和 t,它们只包含小写字母.字符串 t 由字符串 s 随机重排,然后在随机位置添加一个字母.请找出在 t 中被添加的字母.示例:输入:s = "abcd"t = ...

  6. 重新学习Java——Java基本的程序设计结构(一)

    最近在实验室看到各位学长忙于找工作的面试与笔试,深感自己的不足,决定重新好好学习一下<Java核心技术>这本书,曾经靠这本书走入Java的世界,但是也有很多的地方被我疏漏过去了,因此也是作 ...

  7. Android Error:Failed to resolve: com.afollestad:material-dialogs:

    背景: 同事把Android项目直接考给了我...我在Android Studio上运行,然后提示: Error:Failed to resolve: com.afollestad:material- ...

  8. Tornado引入静态css、js文件

    一.静态路径 template_path=os.path.join(os.path.dirname(__file__), "templates") 这里是设置了模板的路径,放置模板 ...

  9. key-value键值型数据库:Redis

    key-value键值型数据库:Redis redis Redis是in-memory型(内存型)的键值数据库,数据在磁盘上是持久的,键类型是字符串,值类型是字符串.字符串集合(Set).sorted ...

  10. binlog_format不同模式下,对mysqlbinlog恢复的影响

      binlog_format='mixed' (root)[(none)]>use test; Reading table information for completion of tabl ...