You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task. 
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.

All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.

You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.

You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

Input

The input consists of multiple data sets. Each data set is given in the following format.


x1 y1 z1 r1 
x2 y2 z2 r2 
... 
xn yn zn rn

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.

The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.

Each of x, y, z and r is positive and is less than 100.0.

The end of the input is indicated by a line containing a zero.

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.

Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

Sample Input

3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0

Sample Output

20.000
0.000
73.834
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iomanip>
using namespace std;
#define MAXN 101
#define INF 200.0
bool been[MAXN];
int n;
double g[MAXN][MAXN],lowcost[MAXN];
/*
最小生成树,如果D(a,b)<=ra+rb,那么g[a][b]=0
否则D(a,b)>ra+rb,g[a][b] = D(a,b)-ra-rb
*/
struct pos
{
double x,y,z,r;
}a[MAXN];
double D(int i,int j)
{
double dx = a[i].x-a[j].x,dy=a[i].y-a[j].y,dz=a[i].z-a[j].z;
return sqrt(dx*dx+dy*dy+dz*dz);
}
double Prim(int beg)
{
double ans = 0.0;
memset(been,false,sizeof(been));
for(int i=;i<n;i++)
{
lowcost[i] = g[beg][i];
}
been[beg] = true;
for(int i=;i<n;i++)
{
double Minc = INF;
int k = -;
for(int j=;j<n;j++)
{
if(!been[j]&&Minc>lowcost[j])
{
Minc = lowcost[j];
k = j;
}
}
if(k==-) return -;
been[k] = true;
ans+=Minc;
for(int j=;j<n;j++)
{
if(!been[j]&&g[k][j]<lowcost[j])
{
lowcost[j] = g[k][j];
}
}
}
return ans;
}
int main()
{
while(scanf("%d",&n),n)
{
for(int i=;i<n;i++)
{
cin>>a[i].x>>a[i].y>>a[i].z>>a[i].r;
}
for(int i=;i<n;i++)
{
for(int j=i+;j<n;j++)
{
double tmp = D(i,j);
if(tmp<=a[i].r+a[j].r)
g[i][j] = g[j][i] =0.0;
else
g[i][j] = g[j][i] = tmp-a[i].r-a[j].r;
}
g[i][i] = 0.0;
}
double ans = Prim();
cout<<fixed<<setprecision()<<ans<<endl;
}
return ;
}

最小生成树 C - Building a Space Station的更多相关文章

  1. (最小生成树) Building a Space Station -- POJ -- 2031

    链接: http://poj.org/problem?id=2031 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6011 ...

  2. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...

  3. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  4. POJ 2031:Building a Space Station 最小生成树

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6083   Accepte ...

  5. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

  6. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

  7. POJ 2031 Building a Space Station

    3维空间中的最小生成树....好久没碰关于图的东西了.....              Building a Space Station Time Limit: 1000MS   Memory Li ...

  8. POJ2031 Building a Space Station 2017-04-13 11:38 48人阅读 评论(0) 收藏

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 8572   Accepte ...

  9. Building a Space Station POJ - 2031

    Building a Space Station POJ - 2031 You are a member of the space station engineering team, and are ...

随机推荐

  1. 大数高精度加减乘除 51nod 1005 大数加法

    1005 大数加法 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出2个大整数A,B,计算A+B的结果. Input 第1行:大数A 第2行:大数B ...

  2. Sql生成不重复的数字

    -- ============================================= -- Author:TUZI -- Create date: 2016.4.18 -- Descrip ...

  3. [ SDOI 2006 ] 仓库管理员的烦恼

    \(\\\) Description 有 \(n\) 种货物和 \(n\) 个仓库,开始第 \(i\) 个仓库里有 \(a_{ij}\) 个第 \(j\) 种货物. 现在要让每种货物都只放到一个仓库里 ...

  4. leetcode464 Can I Win

    思路: 博弈. 实现: class Solution { public: bool dfs(int cur, int len, int sum, int des, vector<int>& ...

  5. 2057. [ZLXOI2015]殉国

    ★☆   输入文件:BlackHawk.in   输出文件:BlackHawk.out   评测插件 时间限制:0.05 s   内存限制:256 MB [题目描述] 正义的萌军瞄准了位于南极洲的心灵 ...

  6. oracle dos命令

    1.无账户密码登录数据库:sqlplus/nolog 后面不能加分号,否则不能识别 2.登录数据库:sqlplus 3.在sql下测试连接性:conn oracle_name/oracle_passw ...

  7. ubuntu部署java环境

    一.安装java sudo add-apt-repository ppa:webupd8team/java sudo apt-get update sudo apt-get install oracl ...

  8. Alpha项目测试

    这个作业属于哪个课程 https://edu.cnblogs.com/campus/xnsy/SoftwareEngineeringClass1/homework/3338 这个作业要求在哪里 htt ...

  9. Jmeter之JDBC请求参数化(一)

    一.环境准备 a.jmeter5.1.1版本最新版本,可以去网页下载:https://jmeter.apache.org/download_jmeter.cgi b.jdbc驱动:链接:https:/ ...

  10. CAD创建组(网页版)

    主要用到函数说明: _DMxDrawX::CreateGroup 创建组.如果组名已经存在,就把实体加入组中.详细说明如下: 参数 说明 BSTR pszName 组名.,如果为空,创建匿名组 IDi ...