POJ 2142 TheBalance 模线性方程求解
题目大意:
就是将两种砝码左右摆放,能够在物品放置在天平上时保持平衡
很容易得到 ax + by = t的模线性方程
按题目要求,希望首先满足 |x| + |y| 最小 , 如果有多种情况,再满足所有砝码质量最小,也就是a|x| + b|y|最小
x = x0 + b/g * k
y = y0 - a/g * k
这里可以通过画一个2维坐标图进行观察 x , y 对于k的直线,我假定 b > a ,初始如果 a>b就交换两者数据,记得最后答案交换回来
因为a,b为砝码重量都大于0
所以x是递增直线,y是递减直线
因为假设b > a了,所以x的上升趋势必然大于y的下降趋势
所以只有在x = 0的左右两个点是满足最小的情况的 , 用xx[2] , yy[2]记录这两个点,然后进行比较即可
/*
当然不交换a , b 也可以, 那就得在 a > b 的条件下多保存两组数据,此时是在y = 0 的左右两个点
*/
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std; int ex_gcd(int a , int &x , int b , int &y)
{
if(b == ){
x = , y = ;
return a;
}
int ans = ex_gcd(b , x , a%b , y);
int t = x;
x = y , y = t - a/b*y;
return ans;
} void my_swap(int &a , int &b)
{
int t = a;
a = b , b = t;
} int my_abs(int a)
{
return a>=?a:-a;
} int main()
{
// freopen("a.in" , "r" , stdin);
int a , b , w;
while(scanf("%d%d%d" , &a , &b , &w) , a){
int x , y;
bool flag = false;
if(b < a){
my_swap(a , b);
flag = true;
} int g = ex_gcd(a , x , b , y);
int k = w/g;
x = k*x , y = k*y;
a /= g , b /= g;
int xx[] , yy[];
if(x >= ){
xx[] = x - x/b*b;
xx[] = xx[] - b;
yy[] = y + x/b*a;
yy[] = yy[] + a;
}else{
xx[] = x - x/b*b+b;
xx[] = xx[] - b;
yy[] = y + x/b*a - a;
yy[] = yy[] + a;
}
int ansx , ansy;
if(my_abs(xx[]) + my_abs(yy[]) == my_abs(xx[]) + my_abs(yy[])){
if(my_abs(xx[])*a + my_abs(yy[])*b < my_abs(xx[])*a + my_abs(yy[])*b)
ansx = my_abs(xx[]) , ansy = my_abs(yy[]);
else
ansx = my_abs(xx[]) , ansy = my_abs(yy[]);
}
else{
if(my_abs(xx[]) + my_abs(yy[]) < my_abs(xx[]) + my_abs(yy[]))
ansx = my_abs(xx[]) , ansy = my_abs(yy[]);
else
ansx = my_abs(xx[]) , ansy = my_abs(yy[]);
}
if(flag)
my_swap(ansx , ansy);
printf("%d %d\n" , ansx , ansy);
}
return ;
}
POJ 2142 TheBalance 模线性方程求解的更多相关文章
- POJ 2115 简单的模线性方程求解
简单的扩展欧几里得题 这里 2^k 不能自作聪明的用 1<<k来写 , k >= 31时就爆int了 , 即使定义为long long 也不能直接这样写 后来老老实实 for(int ...
- poj 2891 模线性方程组求解
Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 8005 ...
- POJ - 2115 C Looooops(扩展欧几里德求解模线性方程(线性同余方程))
d.对于这个循环, for (variable = A; variable != B; variable += C) statement; 给出A,B,C,求在k位存储系统下的循环次数. 例如k=4时 ...
- POJ2115——C Looooops(扩展欧几里德+求解模线性方程)
C Looooops DescriptionA Compiler Mystery: We are given a C-language style for loop of type for (vari ...
- POJ 2115 C Looooops(模线性方程)
http://poj.org/problem?id=2115 题意: 给你一个变量,变量初始值a,终止值b,每循环一遍加c,问一共循环几遍终止,结果mod2^k.如果无法终止则输出FOREVER. 思 ...
- poj_2115C Looooops(模线性方程)
题目链接:http://poj.org/problem?id=2115 C Looooops Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
- C Looooops(扩展欧几里得+模线性方程)
http://poj.org/problem?id=2115 题意:给出A,B,C和k(k表示变量是在k位机下的无符号整数),判断循环次数,不能终止输出"FOREVER". 即转化 ...
- POJ2115 C Looooops 模线性方程(扩展欧几里得)
题意:很明显,我就不说了 分析:令n=2^k,因为A,B,C<n,所以取模以后不会变化,所以就是求(A+x*C)%n=B 转化一下就是求 C*x=B-A(%n),最小的x 令a=C,b=B-A ...
- C Looooops(扩展欧几里得求模线性方程)
http://poj.org/problem?id=2115 题意:对于C的循环(for i = A; i != B; i+=C)问在k位存储系统内循环多少次结束: 若循环有限次能结束输出次数,否则输 ...
随机推荐
- java虚拟机全集(31篇文章)
深入理解java虚拟机系列 深入理解Java虚拟机笔记---内存区域 深入理解Java虚拟机笔记---判断对象是否存活 深入理解Java虚拟机笔记---垃圾收集算法 深入理解Java虚拟机笔记---垃 ...
- 微信小程序去除button边框
button::after{ border: none; } 去button的背景
- Font Awesome矢量图标
下载 font-awesome 文件夹到您的项目中. 在HTML的 <head> 中引用font-awesome.min.css. 可以将Font Awesome图标使用在几乎任何地方,只 ...
- 转 awr自动收集脚本
1. remote get awr report #!/usr/bin/ksh ####sample: sh awr.sh 20170515 20170516 AWR ### default it w ...
- 383 Ransom Note 赎金信
给定一个赎金信 (ransom) 字符串和一个杂志(magazine)字符串,判断第一个字符串ransom能不能由第二个字符串magazines里面的字符构成.如果可以构成,返回 true :否则返回 ...
- hdu 4104 Discount
http://acm.hdu.edu.cn/showproblem.php?pid=4104 一开始还以为这题是背包,然后优化下这个背包,但是一直都优化不出来. 然后题解是直接模拟而已,唉 先从小到大 ...
- MVC之模型绑定
1.前言 MVC全名是Model View Controller,是模型(model)-视图(view)-控制器(controller)的缩写,一种软件设计典范,用一种业务逻辑.数据.界面显示分离的方 ...
- js 获取json数组里面数组的长度
作为一个前端页面开发者第一次处理json数据,遇到了‘js 获取json数组里面数组的长度’?竟然不知道 json没有.length属性(真是要嘲讽下自己),少壮不努力老大徒伤悲啊!以前都是去寻求男朋 ...
- (2)HTML元素与属性(已入垃圾框)
HTML元素 开始标签常被称为起始标签(opening tag),结束标签常称为闭合标签(closing tag) HTML 文档由嵌套的 HTML 元素构成 以上实例包含了七个 HTML 元素 &l ...
- 自学php【二】 PHP计算时间加一天
最近几天在做一个项目,主要是将SQLserver数据到MySQL数据库,一个url跑一次 同步一次昨天的数据,由于很多数据需要同步,所以做了一个操作界面的,一个单纯跑url的 在其中涉及到了对于时间的 ...