题目大意:

就是将两种砝码左右摆放,能够在物品放置在天平上时保持平衡

很容易得到 ax + by = t的模线性方程

按题目要求,希望首先满足 |x| + |y| 最小 , 如果有多种情况,再满足所有砝码质量最小,也就是a|x| + b|y|最小

x = x0 + b/g * k

y = y0 - a/g * k

这里可以通过画一个2维坐标图进行观察 x , y 对于k的直线,我假定 b > a ,初始如果 a>b就交换两者数据,记得最后答案交换回来

因为a,b为砝码重量都大于0

所以x是递增直线,y是递减直线

因为假设b > a了,所以x的上升趋势必然大于y的下降趋势

所以只有在x = 0的左右两个点是满足最小的情况的 , 用xx[2] , yy[2]记录这两个点,然后进行比较即可

/*

当然不交换a , b 也可以, 那就得在 a > b 的条件下多保存两组数据,此时是在y = 0 的左右两个点

*/

 #include <cstdio>
#include <cstring>
#include <iostream>
using namespace std; int ex_gcd(int a , int &x , int b , int &y)
{
if(b == ){
x = , y = ;
return a;
}
int ans = ex_gcd(b , x , a%b , y);
int t = x;
x = y , y = t - a/b*y;
return ans;
} void my_swap(int &a , int &b)
{
int t = a;
a = b , b = t;
} int my_abs(int a)
{
return a>=?a:-a;
} int main()
{
// freopen("a.in" , "r" , stdin);
int a , b , w;
while(scanf("%d%d%d" , &a , &b , &w) , a){
int x , y;
bool flag = false;
if(b < a){
my_swap(a , b);
flag = true;
} int g = ex_gcd(a , x , b , y);
int k = w/g;
x = k*x , y = k*y;
a /= g , b /= g;
int xx[] , yy[];
if(x >= ){
xx[] = x - x/b*b;
xx[] = xx[] - b;
yy[] = y + x/b*a;
yy[] = yy[] + a;
}else{
xx[] = x - x/b*b+b;
xx[] = xx[] - b;
yy[] = y + x/b*a - a;
yy[] = yy[] + a;
}
int ansx , ansy;
if(my_abs(xx[]) + my_abs(yy[]) == my_abs(xx[]) + my_abs(yy[])){
if(my_abs(xx[])*a + my_abs(yy[])*b < my_abs(xx[])*a + my_abs(yy[])*b)
ansx = my_abs(xx[]) , ansy = my_abs(yy[]);
else
ansx = my_abs(xx[]) , ansy = my_abs(yy[]);
}
else{
if(my_abs(xx[]) + my_abs(yy[]) < my_abs(xx[]) + my_abs(yy[]))
ansx = my_abs(xx[]) , ansy = my_abs(yy[]);
else
ansx = my_abs(xx[]) , ansy = my_abs(yy[]);
}
if(flag)
my_swap(ansx , ansy);
printf("%d %d\n" , ansx , ansy);
}
return ;
}

POJ 2142 TheBalance 模线性方程求解的更多相关文章

  1. POJ 2115 简单的模线性方程求解

    简单的扩展欧几里得题 这里 2^k 不能自作聪明的用 1<<k来写 , k >= 31时就爆int了 , 即使定义为long long 也不能直接这样写 后来老老实实 for(int ...

  2. poj 2891 模线性方程组求解

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 8005   ...

  3. POJ - 2115 C Looooops(扩展欧几里德求解模线性方程(线性同余方程))

    d.对于这个循环, for (variable = A; variable != B; variable += C) statement; 给出A,B,C,求在k位存储系统下的循环次数. 例如k=4时 ...

  4. POJ2115——C Looooops(扩展欧几里德+求解模线性方程)

    C Looooops DescriptionA Compiler Mystery: We are given a C-language style for loop of type for (vari ...

  5. POJ 2115 C Looooops(模线性方程)

    http://poj.org/problem?id=2115 题意: 给你一个变量,变量初始值a,终止值b,每循环一遍加c,问一共循环几遍终止,结果mod2^k.如果无法终止则输出FOREVER. 思 ...

  6. poj_2115C Looooops(模线性方程)

    题目链接:http://poj.org/problem?id=2115 C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  7. C Looooops(扩展欧几里得+模线性方程)

    http://poj.org/problem?id=2115 题意:给出A,B,C和k(k表示变量是在k位机下的无符号整数),判断循环次数,不能终止输出"FOREVER". 即转化 ...

  8. POJ2115 C Looooops 模线性方程(扩展欧几里得)

    题意:很明显,我就不说了 分析:令n=2^k,因为A,B,C<n,所以取模以后不会变化,所以就是求(A+x*C)%n=B 转化一下就是求 C*x=B-A(%n),最小的x 令a=C,b=B-A ...

  9. C Looooops(扩展欧几里得求模线性方程)

    http://poj.org/problem?id=2115 题意:对于C的循环(for i = A; i != B; i+=C)问在k位存储系统内循环多少次结束: 若循环有限次能结束输出次数,否则输 ...

随机推荐

  1. 微信小程序-wepy-组件模板重复渲染

    微信小程序开发,有使用wepy框架的需求.上手: 安装自己可以到官网查看,飞机票:https://tencent.github.io/wepy/document.html#/ 具体开发模式和Vue开发 ...

  2. 为什么要用Go语言做后端

    FMZ数字货币量化平台 www.fmz.com, 后端使用Go语言,这里是创始人Zero谈论使用Go语言所带了的便利.原帖地址:https://www.zhihu.com/question/27172 ...

  3. ACM_闹钟人生(水题)

    闹钟人生 Time Limit: 2000/1000ms (Java/Others) Problem Description: 已知一个时钟一开始指向0点,顺时针走了n个小时,求它最终所指向的数字(时 ...

  4. 转 MySQL实验(三) 过程式数据库对象的使用

    转 http://blog.csdn.net/anne999/article/details/70432558

  5. [转]ASP.NET MVC Domain Routing

    本文转自:http://blog.maartenballiauw.be/post/2009/05/20/ASPNET-MVC-Domain-Routing.aspx ASP.NET MVC Domai ...

  6. LINQ数据库技术

    LINQ(Language Integrated Qyery),中文名字是语言集成查询.它提供一个统一的编程概念和语法,编程人员不需要关心将要访问的是关系数据库还是XML数据,或是远程的对象,它都采用 ...

  7. 后台管理进程GameMaster

    初步准备在后台加一个进程,用来控制进程中的各种数据,修改,查看,删除玩家数据类似于后端的gm控制平台

  8. Framework7首页隐藏navbar

    f7首页隐藏navbar其他页面显示navbar 帮别人解决问题,自己也记录一下, 首页.navbar加.navbar-hidden, 首页.page加.no-navbar, 如果首页有.navbar ...

  9. git reset作用

    git reset: 1. 文件从暂存区回退到工作区,撤销add 2. 版本回退  一:文件从暂存区回退到工作区,撤销add 如果想取消某个add的文件,可以使用该命令来进行撤销操作 撤消add:gi ...

  10. mongo 3.4分片集群系列之五:详解平衡器

    这个系列大致想跟大家分享以下篇章: 1.mongo 3.4分片集群系列之一:浅谈分片集群 2.mongo 3.4分片集群系列之二:搭建分片集群--哈希分片 3.mongo 3.4分片集群系列之三:搭建 ...