有N堆石子
·从某堆石子中取走一个
·合并任意两堆石子
不能操作的人输。
100%的数据满足T<=100,  N<=50. ai<=1000
 

容易发现基础操作数$d=\sum a_i +n-1$
没有个数为1的堆还好说,有的话@#$%^&好麻烦啊啊啊啊啊怎么可能找规律
然后看题解,woc记忆化搜索
$f(i,j)$表示i个个数为1的堆,其他操作数为j的胜负态
枚举操作转移就行了,一定要枚举对!注意$j=1$时
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=,M=;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,f[N][M]; int dfs(int a,int b){
int &now=f[a][b];
if(now!=-) return now;
if(a==) return now=b&;
if(b==) return now=dfs(a+,); if(a && !dfs(a-,b) ) return now=;
if(b && !dfs(a,b-) ) return now=;
if(a && b && !dfs(a-,b+) ) return now=;
if(a>= && !dfs(a-,b++(b!=)) ) return now=;
return now=;
}
int main(){
//freopen("in","r",stdin);
int T=read();
memset(f,-,sizeof(f));
while(T--){
n=read();
int x=,y=,a;
for(int i=;i<=n;i++){
a=read();
if(a==) x++;
else y+=a+;
}
if(y) y--;
puts(dfs(x,y) ? "YES" : "NO");
}
}
 
 
 
 

BZOJ 3895: 取石子[SG函数 搜索]的更多相关文章

  1. bzoj 3895: 取石子

    $ \color{#0066ff}{ 题目描述 }$ Alice和Bob两个好朋含友又开始玩取石子了.游戏开始时,有N堆石子 排成一排,然后他们轮流操作(Alice先手),每次操作时从下面的规则中任选 ...

  2. bzoj 3895 取石子——博弈论

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3895 看题解:https://blog.csdn.net/popoqqq/article/d ...

  3. bzoj 3895 取石子 —— 博弈论

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3895 看了博客:https://blog.csdn.net/popoqqq/article/ ...

  4. 【BZOJ-3895】取石子 记忆化搜索 + 博弈

    3895: 取石子 Time Limit: 1 Sec  Memory Limit: 512 MBSubmit: 263  Solved: 127[Submit][Status][Discuss] D ...

  5. bzoj 1874 取石子游戏 题解 &amp; SG函数初探

    [原题] 1874: [BeiJing2009 WinterCamp]取石子游戏 Time Limit: 5 Sec  Memory Limit: 162 MB Submit: 334  Solved ...

  6. BZOJ 1874 取石子游戏 - SG函数

    Description $N$堆石子, $M$种取石子的方式, 最后取石子的人赢, 问先手是否必胜 $A_i <= 1000$,$ B_i <= 10$ Solution 由于数据很小, ...

  7. BZOJ 1874 取石子游戏 (NIM游戏)

    题解:简单的NIM游戏,直接计算SG函数,至于找先手策略则按字典序异或掉,去除石子后再异或判断,若可行则直接输出. #include <cstdio> const int N=1005; ...

  8. BZOJ 3895 3895: 取石子 / Luogu SP9934 ALICE - Alice and Bob (博弈 记忆化搜索)

    转自PoPoQQQ大佬博客 题目大意:给定n堆石子,两人轮流操作,每个人可以合并两堆石子或拿走一个石子,不能操作者输,问是否先手必胜 直接想很难搞,我们不妨来考虑一个特殊情况 假设每堆石子的数量都&g ...

  9. 【BZOJ】3895: 取石子

    [算法]博弈论+记忆化搜索 [题意]给定n堆石子,两人轮流操作,每个人可以合并两堆石子或拿走一个石子,不能操作者输,问是否先手必胜 [题解] 首先,若所有石子堆的石子数>1,显然总操作数为(石子 ...

随机推荐

  1. c# for 和 foreach 的区别

    foreach 能够进行foreach的类型结构,都必须实现IEnumerable接口. IEnumerable接口,有一个GetEnumerator的方法,返回一个实现IEnumerator接口的对 ...

  2. 如何在vue中使用sass

    使用sass,我们需要安装sass的依赖包 npm install --save-dev sass-loader //sass-loader依赖于node-sass npm install --sav ...

  3. Dora.Interception, 一个为.NET Core度身打造的AOP框架[3]:Interceptor的注册

    在<不一样的Interceptor>中我们着重介绍了Dora.Interception中最为核心的对象Interceptor,以及定义Interceptor类型的一些约定.由于Interc ...

  4. 再起航,我的学习笔记之JavaScript设计模式29(节流模式)

    节流模式 概念介绍 节流模式(Throttler): 对重复的业务逻辑进行节流控制,执行最后一次操作并取消其他操作,以提高性能. 优化滚动事件 有的时候我们再为滚动条添加动画的时候,会发现滚动条不停的 ...

  5. 好的Qt学习资料

    1.青春不老,奋斗不止!---CSDN博客地址http://blog.csdn.net/liang19890820:

  6. YUI 的模块信息配置优先级关系梳理

    背景 YUI的配置参数较多, 可以在好几个地方配置一个module的相关信息, 如: //在全局配置, 所以YUI实例共享 YUI_config = { modules: { 'w-autcomple ...

  7. php(ThinkPHP)实现微信小程序的登录过程

    源码也在我的github中给出 https://github.com/wulongtao/think-wxminihelper 下面结合thinkPHP框架来实现以下微信小程序的登录流程,这些流程是结 ...

  8. two Pass方法连通域检测

    原理: Two-Pass方法检测连通域的原理可参见这篇博客:http://blog.csdn.net/lichengyu/article/details/13986521. 参考下面动图,一目了然. ...

  9. PostgreSql问题:ERROR: operator does not exist: timestamp without time zone > character varying

    问题描述: ERROR:  operator does not exist: timestamp without time zone > character varying 解决方法: //注意 ...

  10. Python 魔法方法详解

    据说,Python 的对象天生拥有一些神奇的方法,它们总被双下划线所包围,他们是面向对象的 Python 的一切. 他们是可以给你的类增加魔力的特殊方法,如果你的对象实现(重载)了这些方法中的某一个, ...