bzoj 4033: [HAOI2015]树上染色 [树形DP]
4033: [HAOI2015]树上染色
我写的可是\(O(n^2)\)的树形背包!
注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N = 2005, P = 1e9+7;
inline int read() {
char c=getchar(); int x=0,f=1;
while(c<'0'||c>'9') {if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9') {x=x*10+c-'0';c=getchar();}
return x*f;
}
int n, m, mm, u, v;
struct edge{int v, ne, w;} e[N<<1];
int cnt, h[N];
inline void ins(int u, int v, int w) {
e[++cnt] = (edge){v, h[u], w}; h[u] = cnt;
e[++cnt] = (edge){u, h[v], w}; h[v] = cnt;
}
ll f[N][N]; int size[N];
void dp(int u, int fa) { //printf("dp %d %d\n", u, fa);
size[u] = 1;
for(int i=h[u]; i; i=e[i].ne) {
int v = e[i].v, w = e[i].w;
if(v == fa) continue;
dp(v, u);
for(int j = min(size[u] + size[v], m); j >= 0; j--) {
int _ = min(j, size[v]);
for(int k = max(0, j - size[u]); k <= _; k++)
f[u][j] = max(f[u][j], f[v][k] + f[u][j-k] + (ll) w * ( k * (m-k) + (size[v] - k) * (mm - size[v] + k) ) );
}
size[u] += size[v];
}
//printf("look %d %d\n", u, size[u]);
//for(int i=0; i<=min(size[u], m); i++) printf("f %d %d %lld\n", u, i, f[u][i]);
//puts("end\n");
}
int main() {
//freopen("in", "r", stdin);
freopen("haoi2015_t1.in", "r", stdin);
freopen("haoi2015_t1.out", "w", stdout);
n = read(); m = read(); mm = n - m;
for(int i=1; i<n; i++) u = read(), v = read(), ins(u, v, read());
dp(1, 0);
printf("%lld\n", f[1][m]);
}
bzoj 4033: [HAOI2015]树上染色 [树形DP]的更多相关文章
- BZOJ 4033 [HAOI2015]树上染色 ——树形DP
可以去UOJ看出题人的题解. 这样的合并,每一个点对只在lca处被考虑到,复杂度$O(n^2)$ #include <map> #include <ctime> #includ ...
- BZOJ 4033: [HAOI2015]树上染色题解
BZOJ 4033: [HAOI2015]树上染色题解(树形dp) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327400 原题地址: BZOJ 403 ...
- 洛谷 P3177 [HAOI2015]树上染色 树形DP
洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...
- BZOJ 4033[HAOI2015] 树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3188 Solved: 1366[Submit][Stat ...
- [BZOJ 4033] [HAOI2015] T1 【树形DP】
题目链接:BZOJ - 4033 题目分析 使用树形DP,用 f[i][j] 表示在以 i 为根的子树,有 j 个黑点的最大权值. 这个权值指的是,这个子树内部的点对间距离的贡献,以及 i 和 Fat ...
- [BZOJ4033][HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2437 Solved: 1034[Submit][Stat ...
- 【BZOJ4033】[HAOI2015]树上染色 树形DP
[BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...
- bzoj4033 [HAOI2015]树上染色——树形DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4033 树形DP,状态中加入 x 与父亲之间的边的贡献: 边权竟然是long long... ...
- bzoj 4033: [HAOI2015]树上染色【树形dp】
准确的说应该叫树上分组背包?并不知道我写的这个叫啥 设计状态f[u][j]为在以点u为根的子树中有j个黑点,转移的时候另开一个数组,不能在原数组更新(因为会用到没更新时候的状态),方程式为g[j+k] ...
随机推荐
- HDU1102(最小生成树Kruskal算法)
Constructing Roads Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- Centos7安装和卸载Mongodb数据库
MongoDB是一个基于分布式文件存储的数据库.由C++语言编写.旨在为WEB应用提供可扩展的高性能数据存储解决方案. MongoDB MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非 ...
- Xshell无法连接到LINUX虚拟机
首先与遇到的情况是,在虚拟机下安装了Linux后,xshell无法连接远程的虚拟机. 我遇到的情况是虚拟机可以ping 主机,主机确ping不了虚拟机. 使用的VM设置了两个网卡,一个nat 一个h ...
- c++(递归和堆栈)
看过我前面博客的朋友都清楚,函数调用主要依靠ebp和esp的堆栈互动来实现的.那么递归呢,最主要的特色就是函数自己调用自己.如果一个函数调用的是自己本身,那么这个函数就是递归函数. 我们可以看一下普通 ...
- Nginx的启动(start),停止(stop)命令
http://blog.csdn.net/u010739551/article/details/51654859 查看Nginx的版本号:nginx -V 启动Nginx:start nginx 快速 ...
- 高级设置电脑系统windows7防火墙出错代码0×6D9原因与解决技巧
高级设置windows防火墙能够更好的保护电脑系统安全,在电脑系统windows7设置过程中难免会遇到某些问题,有用户在安装MRGT后想要打开SNMP的161端口,但在打开高级安全windows防火墙 ...
- Angular 4+ HttpClient
个人博客迁移至 http://www.sulishibaobei.com 处: 这篇,算是上一篇Angular 4+ Http的后续: Angular 4.3.0-rc.0 版本已经发布
- 顺序一致性内存模型与JMM的“顺序一致性”
顺序一致性内存模型是一个被计算机科学家理想化了的理论参考模型,它为程序员提供了极强的内存可见性保证.顺序一致性内存模型有两大特性.1)一个线程中的所有操作必须按照程序的顺序来执行.2)(不管程序是否同 ...
- maven项目使用jacoco插件检测代码覆盖率详细配置
使用maven构建项目(java项目或者web项目都可以) jacoco插件的配置参考官方网址:http://www.eclemma.org/jacoco/trunk/doc/maven.html ( ...
- ClassLoader.getResourceAsStream() 与 Class.getResourceAsStream()的区别
Class.getResourceAsStream() 会指定要加载的资源路径与当前类所在包的路径一致. 例如你写了一个MyTest类在包com.test.mycode 下,那么MyTest. ...