BZOJ_4004_[JLOI2015]装备购买_线性基

Description

脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 
(1 <= i <= n; 1 <= j <= m),每个装备需要花费 ci,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着
怎样才能花尽量少的钱买尽量多的装备。对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(也就是
说脸哥可以利用手上的这些装备组合出这件装备的效果),那么这件装备就没有买的必要了。严格的定义是,如果
脸哥买了 zi1,.....zip这 p 件装备,那么对于任意待决定的 zh,不存在 b1,....,bp 使得 b1zi1 + ... + bpzi
p = zh(b 是实数),那么脸哥就会买 zh,否则 zh 对脸哥就是无用的了,自然不必购买。举个例子,z1 =(1; 2;
 3);z2 =(3; 4; 5);zh =(2; 3; 4),b1 =1/2,b2 =1/2,就有 b1z1 + b2z2 = zh,那么如果脸哥买了 z1 和 z2 
就不会再买 zh 了。脸哥想要在买下最多数量的装备的情况下花最少的钱,你能帮他算一下吗?

Input

第一行两个数 n;m。接下来 n 行,每行 m 个数,其中第 i 行描述装备 i 的各项属性值。接下来一行 n 个数,
其中 ci 表示购买第 i 件装备的花费。

Output

一行两个数,第一个数表示能够购买的最多装备数量,第二个数表示在购买最多数量的装备的情况下的最小花费

Sample Input

3 3
1 2 3
3 4 5
2 3 4
1 1 2

Sample Output

2 2

HINT

如题目中描述,选择装备 1 装备 2,装备 1 装备 3,装备 2 装备 3 均可,但选择装备 1 和装备 2 的花费最小,为 2。对于 100% 的数据, 1 <= n;m <= 500; 0 <= aj <= 1000。

线性基是拟阵,拟阵最优化问题使用贪心。
高斯消元一遍,每次把这一项的系数不是0并且花钱数最少的装备拿出来消去其他项。
可以证明最后的结果一定是最优的。
 
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define eps 1e-6
typedef long double f2;
int n,m;
f2 a[510][510];
f2 fabs(f2 x){return x>0?x:-x;}
void Gauss() {
int i,j,k,mx;
f2 ans=0;
int cnt=0;
for(i=1;i<=m;i++) {
mx=0;
for(j=i;j<=n;j++) {
if(fabs(a[j][i])>eps) {
if(!mx) mx=j;
else if(a[j][m+1]<a[mx][m+1]) mx=j;
}
}
if(!mx) continue;
ans+=a[mx][m+1]; cnt++;
for(j=i;j<=m+1;j++) swap(a[i][j],a[mx][j]);
for(j=i+1;j<=n;j++) {
f2 tmp=-(a[j][i]/a[i][i]);
a[j][i]=0;
for(k=i+1;k<=m;k++) a[j][k]+=tmp*a[i][k];
}
}
printf("%d %.0Lf\n",cnt,ans);
}
int main() {
scanf("%d%d",&n,&m);
int i,j;
for(i=1;i<=n;i++) {
for(j=1;j<=m;j++) {
scanf("%Lf",&a[i][j]);
}
}
for(i=1;i<=n;i++) scanf("%Lf",&a[i][m+1]);
Gauss();
}

BZOJ_4004_[JLOI2015]装备购买_线性基的更多相关文章

  1. bzoj 4004 [JLOI2015]装备购买 拟阵+线性基

    [JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1820  Solved: 547[Submit][Status][Dis ...

  2. [JLOI2015]装备购买(线性基)

    [JLOI2015]装备购买 题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 nn 件装备,每件装备有 \(m\) 个属性,用向量 \(\mathbf{z_i}\)=\((a_1, \ldots ...

  3. 洛谷P3265 [JLOI2015]装备购买 [线性基]

    题目传送门 装备购买 格式难调,题面就不放了. 分析: 一句话,有$n$件物品,每件物品有$m$个属性和一个花费值,如果一个装备的属性值可以由其他装备的属性值改变系数后组合得到那就不买,求购买最多装备 ...

  4. 【题解】 bzoj4004: [JLOI2015]装备购买 (线性基)

    bzoj4004,戳我戳我 Solution: 裸的线性基,这没啥好说的,我们说说有意思的地方(就是我老是wa的地方) Attention: 这题在\(luogu\),上貌似不卡精度,\(bzoj\) ...

  5. 洛谷P3265 [JLOI2015]装备购买(线性基+高斯消元)

    传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 不难看出题目讲的就是线性基 这种最小化权值的问题一般都是贪心的,就是按价值从低到高考虑每一个是否能选 据说贪心的证明得用拟阵我不会 据说这题是实数意 ...

  6. BZOJ4004 [JLOI2015]装备购买[贪心+线性基+高消]

    一个物品可以被其他物品表出,说明另外的每个物品看成矩阵的一个行向量可以表出该物品代表的行向量. 于是构造矩阵,求最多选多少个物品,就是尽可能用已有的物品去表示,相当于去消去一些没必要物品, 类似于xo ...

  7. [BZOJ4004][JLOI2015]装备购买(贪心+线性基)

    求最小权极大线性无关组. 先将所有向量按权值排序,从小到大依次判断,若能被前面已选向量线性表出则不选,这样一定最优. 据说是用拟阵来证明,但感性理解一下感觉比较显然,首先这样个数一定是最多的,其次对于 ...

  8. 【BZOJ4004】装备购买(线性基)

    [BZOJ4004]装备购买(线性基) 题面 BZOJ 洛谷 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am ...

  9. 【bzoj4004】【JLOI2015】装备购买 (线性基+高斯消元)

    Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 < ...

随机推荐

  1. onload="fixImage(this, 200, 200)"

    function fixImage(img, w, h) { var newImg = new Image(); //获得图片的原始尺寸 newImg.src = img.src; var lh; / ...

  2. 远离压力,提高效率——Getting things done读书笔记

    一.确定时间.空间和工具   二.收集阶段:填充工作篮         1. 这有助于你认识到自己面对的工用量.         2. 同时让你清楚"隧道的终点"在哪        ...

  3. linux利用命令重置大量密码

     yum -y install expectmkpasswd -l 10 -v was | grep 'is *'  >> 123.txtmkpasswd -l 10 -v logv |  ...

  4. zxg项目准备的技术资料

    bootstrap工具大全:http://www.w3cplus.com/source/the-best-bootStrap-resources.html ubuntu-安装aptana3  http ...

  5. JAVAEE——BOS物流项目13:Quartz入门案例、核心概念、cron 表达式的格式(了解)

    1.quartz入门案例 本入门案例基于spring和quartz整合完成. 第一步:创建maven工程,导入spring和quartz相关依赖 第二步:创建任务类 第三步:在spring配置文件中配 ...

  6. HTML编码和CSS编码会遇到的问

    http://codeguide.bootcss.com/#html-syntax  参考链接 属性顺序 HTML 属性应当按照以下给出的顺序依次排列,确保代码的易读性. class id, name ...

  7. SpringCloud实战-Ribbon客户端负载均衡

    前面我们已经完成了注册中心和服务提供者两个基础组件.接着介绍使用Spring Cloud Ribbon在客户端负载均衡的调用服务. ribbon 是一个客户端负载均衡器,可以简单的理解成类似于 ngi ...

  8. JavaScript里面的循环方法小结

    一,原生JavaScript中的循环: for 循环代码块一定的次数,它有三个参数,来决定代码块的循环次数,第一个是初始值,第二个是终止值,第三个参数是变化规则: //for循环 for(var i ...

  9. Maven学习(八)-- 使用Nexus搭建Maven私服

    摘自:http://www.cnblogs.com/xdp-gacl/p/4068967.html 一.搭建nexus私服的目的 为什么要搭建nexus私服,原因很简单,有些公司都不提供外网给项目组人 ...

  10. socket和webService的区别

    网络七层协议为:物理层.数据链路层.网络层.传输层.会话层.表示层.应用层 socket 只是 java在网络层定义的类,用来实现网络层.上面的各层需要我们自己在程序里实现. 例如端口可以自己定义 . ...