bzoj3811 玛里苟斯
分三种情况讨论
k=1时,对于每一位而言,只要有一个数这一位是1,那么这个就有0.5的概率是1,选他就是1,不选就是0,有第二个的话,在第一个选或不选的前提下,也各有0.5的几率选或不选,0和1的概率还是一半一半。所以无论有几个,只要有任意一个数该位不得0,期望就是(1<<i)/2。所以我们只需要把所有的或起来除以二即可。
k=2时,我们需要记录每两位之间的贡献,如果所有的数这两位都一样而且有都是1的数,那么这两位作出的贡献就是(1<<i+j)/2,
如果有不一样的,那么贡献就是(1<<i+j)/4,
k>=3时,我们发现现在的异或和最大是(1<<22),因为题目保证答案在(1<<63)内,所以我们状压直接暴力乱搞就好了,因为线性基的期望就是原数组的期望。然而我并不会理性证明,只能感性理解
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<vector>
#define LL unsigned long long
#define N 100500
using namespace std;
int n,m,p[],bo[];
LL a[N],ANS,res;
vector<int> v;
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)scanf("%llu",&a[i]);
if(m==){
LL ans=;
for(int i=;i<=n;i++)ans|=a[i];
if(ans&1ll)printf("%llu.5\n",ans>>1ll);
else printf("%llu\n",ans>>1ll);
}
else if(m==){
LL ans=;
for(int i=;i<=n;i++)ans|=a[i];
for(int i=;i<=;i++)if(ans&(1ll<<i))bo[i]=;
for(int i=;i<=;i++)if(bo[i]){
for(int j=;j<=;j++)if(bo[j]){
bool flag=;
for(int k=;k<=n;k++)if(((a[k]>>i)&)!=((a[k]>>j)&)){flag=;break;}
if(i+j--flag<)res++;
else ANS+=1ll<<i+j--flag;
}
}
ANS+=res>>1ll;res&=1ll;
printf("%llu",ANS);
if(res)printf(".5\n");
}
else{
for(int i=;i<=n;i++)
for(int j=;~j;j--)if(a[i]&(1ll<<j)){
if(p[j])a[i]^=a[p[j]];
else{v.push_back(a[i]);p[j]=i;break;}
}
int nn=v.size();
for(int i=;i<(<<nn);i++){
LL val=,a=,b=;
for(int j=;j<nn;j++)if(i&(<<j))val^=v[j];
for(int j=;j<=m;j++){
a=a*val;b=b*val;
a+=(b>>nn);b&=(1ll<<nn)-;
}
ANS+=a;res+=b;
ANS+=res>>nn;res&=(1ll<<nn)-;
}
printf("%llu",ANS);
if(res)printf(".5\n");
}
return ;
}
bzoj3811 玛里苟斯的更多相关文章
- BZOJ3811 玛里苟斯(线性基+概率期望)
k=1的话非常好做,每个有1的位都有一半可能性提供贡献.由组合数的一些性质非常容易证明. k=2的话,平方的式子展开可以发现要计算的是每一对位提供的贡献,于是需要计算每一对位被同时选中的概率.找出所有 ...
- 【BZOJ3811】玛里苟斯(线性基)
[BZOJ3811]玛里苟斯(线性基) 题面 BZOJ 题解 \(K=1\)很容易吧,拆位考虑贡献,所有存在的位出现的概率都是\(0.5\),所以答案就是所有数或起来的结果除二. \(K=2\)的情况 ...
- 【bzoj3811】【清华集训2014】玛里苟斯
3811: 玛里苟斯 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 500 Solved: 196[Submit][Status][Discuss] ...
- 【BZOJ3811/UOJ36】 玛里苟斯
Description 魔法之龙玛里苟斯最近在为加基森拍卖师的削弱而感到伤心,于是他想了一道数学题. S 是一个可重集合,S={a1,a2,…,an}. 等概率随机取 S 的一个子集 A={ai1,… ...
- bzoj3811 uoj36 玛里苟斯
做题前问了一下miaom,得到了一个奇怪的回答 mmp 这题分类讨论 k=1sb题 k=2按位计算,把每个数看成几个2的幂次的和,按位跑期望 k>2线性基sb题 没了 #include<i ...
- bzoj 3811: 玛里苟斯
3811: 玛里苟斯 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 190 Solved: 95[Submit][Status][Discuss] ...
- uoj 36 玛里苟斯
[清华集训2014]玛里苟斯 - 题目 - Universal Online Judge k=1,2,3,4,5各占20pts是提示 应当分开考虑 k=1 拆位,如果第i位有1,则有1/2的概率xor ...
- 清华集训2014 day1 task1 玛里苟斯
题目 这可算是描述很简单的一道题了!但是不简单. \(S\)是一个可重集合,\(S = \{a_1, a_2, \dots, a_n \}\). 等概率随机取\(S\)的一个子集\(A = \{a_{ ...
- [UOJ]#36. 【清华集训2014】玛里苟斯
题目大意:给n个数字,求子集的异或和的k次方的期望(n<=10^5,k<=5,保证答案小于2^63) 做法:首先如果从集合中拿出a和b,把a和a xor b放回集合,子集的异或和与原来是一 ...
随机推荐
- MySql 行转列 存储过程实现
同学们在使用mysql的过程中,会遇到一个行转列的问题,就是把多条数据转化成一条数据 用多列显示. 方法1. 实现方式用下面的存储过程,表名对应的修改就行. BEGIN declare current ...
- jdk1.7 tomcat-7安装
由于软件下载地址经常有变动,所以不能直接wget,还是直接到网上点击下载 下载jdk http://www.oracle.com/technetwork/java/javase/downloads/j ...
- HTML DOM 访问2
getElementsByTagName() 方法 getElementsByTagName() 返回带有指定标签名的所有元素. x=document.getElementById("mai ...
- Qt与FFmpeg联合开发指南(三)——编码(1):代码流程演示
前两讲演示了基本的解码流程和简单功能封装,今天我们开始学习编码.编码就是封装音视频流的过程,在整个编码教程中,我会首先在一个函数中演示完成的编码流程,再解释其中存在的问题.下一讲我们会将编码功能进行封 ...
- Tracert(跟踪路由)是路由跟踪实用程序,用于确定 IP 数据包访问目标所采取的路径。
Tracert(跟踪路由)是路由跟踪实用程序,用于确定 IP 数据包访问目标所采取的路径. Tracert 命令用 IP 生存时间 (TTL) 字段和 ICMP 错误消息来确定从一个主机到网络上其 ...
- Day14 Javascript 点击添加出弹窗,取消隐藏弹窗小练习 反选,全选,取消边框
点击添加出弹窗,取消隐藏弹窗小练习 代码如下: <!DOCTYPE html> <html lang="en"> <head> <meta ...
- Ubuntu下定时任务和自启动任务的部署
1.定时任务的部署,最简单的方法是执行 crontab -e 然后在下面加上世间周期配置和要执行的命令,一般情况下,可以把要执行的任务用bash脚本封装一下,格式如下所示: minute hour ...
- Ocelot中文文档-中间件注入和重写
警告!请谨慎使用. 如果您在中间件管道中看到任何异常或奇怪的行为,并且正在使用以下任何一种行为.删除它们,然后重试! 当在Startup.cs中配置Ocelot的时候,可以添加或覆盖中间件.如下所示: ...
- C#现代代码风格指南
参考资料: asp.net 主页仓库 代码风格 -- 一般原则 最通用的指导原则是我们使用所有的VS默认设置的代码格式,除了我们把系统命名空间放在其他命名空间之前(这在VS中是默认的,但是在VS的更新 ...
- Linux之SSH密钥认证
1.SSH协议的认识 SSH 为 Secure Shell 的缩写,由 IETF 的网络小组(Network Working Group)所制定:SSH 为建立在应用层基础上的安全协议.SSH 是目前 ...