3294: [Cqoi2011]放棋子

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 755  Solved: 294
[Submit][Status][Discuss]

Description

Input

输入第一行为两个整数n, m, c,即行数、列数和棋子的颜色数。第二行包含c个正整数,即每个颜色的棋子数。所有颜色的棋子总数保证不超过nm

Output

输出仅一行,即方案总数除以 1,000,000,009的余数。

Sample Input

4 2 2
3 1

Sample Output

8

HINT

N,M<=30 C<=10 总棋子数有大于250的情况

很巧妙的dp,状态的定义很好
首先g[k][i][j]表示第k种颜色占据i行j列的方案
占据i行j列,放的棋子数在[max(i,j),i*j]之间
有i*j个格子,选择a[k]个放置,再减去没有完全占据i行j列的情况

然后f[k][i][j]表示前k种颜色占据i行j列
枚举每种颜色占据几行几列,从前一种颜色转移过来

最后统计ans的时候,考虑前p中颜色占据几行几列再乘上组合数

具体转移的看代码

推荐blog
http://blog.csdn.net/Regina8023/article/details/42584227

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define ll long long
#define N 35
#define mod 1000000009
using namespace std;
int n,m,p,a[N],c[N*N][N*N];
ll g[N][N][N],f[N][N][N];
int main(){
#ifdef wsy
freopen("data.in","r",stdin);
#else
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
#endif
scanf("%d%d%d",&n,&m,&p);
for(int i=;i<=p;i++)scanf("%d",&a[i]);
for(int i=;i<=n*m;i++)c[i][i]=c[i][]=;
for(int i=;i<=n*m;i++)
for(int j=;j<i;j++)
c[i][j]=(c[i-][j-]+c[i-][j])%mod; for(int k=;k<=p;k++)
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
if(i*j<a[k]||max(i,j)>a[k])continue;
g[k][i][j]=c[i*j][a[k]];
for(int x=;x<=i;x++)
for(int y=;y<=j;y++)
if((i-x)||(j-y))
g[k][i][j]=(mod+g[k][i][j]-g[k][x][y]*c[i][x]%mod*c[j][y]%mod)%mod;
} f[][][]=;
for(int k=;k<=p;k++)
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
if(i*j<a[k])continue;
for(int x=;x<i;x++)
for(int y=;y<j;y++)
f[k][i][j]=(f[k][i][j]+(f[k-][x][y]*g[k][i-x][j-y]%mod*c[i][x]%mod*c[j][y]%mod))%mod;
}
ll ans=;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
ans=(ans+f[p][i][j]*c[n][i]%mod*c[m][j]%mod)%mod;
cout<<ans;
return ;
}

bzoj3294[Cqoi2011]放棋子 dp+组合+容斥的更多相关文章

  1. bzoj千题计划261:bzoj3294: [Cqoi2011]放棋子

    http://www.lydsy.com/JudgeOnline/problem.php?id=3294 如果一个颜色的棋子放在了第i行第j列,那这种颜色就会占据第i行第j列,其他颜色不能往这儿放 设 ...

  2. BZOJ3294: [Cqoi2011]放棋子(计数Dp,组合数学)

    题目链接 解题思路: 发现一个性质,如果考虑一个合法的方案可以将行和列都压到一起,也就是说,在占用行数和列数一定的情况下,行列互换是不会影响答案的,那么考虑使用如下方程: $f[i][j][k]$为占 ...

  3. bzoj3622已经没有什么好害怕的了 dp+组合+容斥(?)

    3622: 已经没有什么好害怕的了 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1033  Solved: 480[Submit][Status][ ...

  4. [CQOI2011]放棋子--DP

    题目描述: 输入格式 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数保证不超过nm.N,M<=30 C<=10 ...

  5. BZOJ3294: [Cqoi2011]放棋子

    Description   Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数保证不超过nm. Output 输出 ...

  6. BZOJ3294 CQOI2011放棋子(动态规划)

    可以看做棋子放在某个位置后该种颜色就占领了那一行一列.行列间彼此没有区别. 于是可以设f[i][j][k]表示前k种棋子占领了i行j列的方案数.转移时枚举第k种棋子占领几行几列.注意行列间是有序的,要 ...

  7. BZOJ.2339.[HNOI2011]卡农(思路 DP 组合 容斥)

    题目链接 \(Description\) 有\(n\)个数,用其中的某些数构成集合,求构造出\(m\)个互不相同且非空的集合(\(m\)个集合无序),并满足每个数总共出现的次数为偶数的方案数. \(S ...

  8. 【BZOJ3294】放棋子(动态规划,容斥,组合数学)

    [BZOJ3294]放棋子(动态规划,容斥,组合数学) 题面 BZOJ 洛谷 题解 如果某一行某一列被某一种颜色给占了,那么在考虑其他行的时候可以直接把这些行和这些列给丢掉. 那么我们就可以写出一个\ ...

  9. 【BZOJ 3294】 3294: [Cqoi2011]放棋子 (DP+组合数学+容斥原理)

    3294: [Cqoi2011]放棋子 Description Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数 ...

随机推荐

  1. 201421123042 《Java程序设计》第7周学习总结

    1. 本周学习总结 1.1 思维导图:Java图形界面总结 2.书面作业 1. GUI中的事件处理 1.1 写出事件处理模型中最重要的几个关键词. 事件源 事件对象 事件监听器 事件适合配器 1.2 ...

  2. 部分和问题 nyoj

    部分和问题 时间限制:1000 ms  |  内存限制:65535 KB 难度:2   描述 给定整数a1.a2........an,判断是否可以从中选出若干数,使它们的和恰好为K.   输入 首先, ...

  3. JAVA_SE基础——67.System类

    System类对大家都不陌生吧! 以前经常需要打印结果时使用的都是"System.out.println()"语句,这句代码中就使用了System类.System类定义了一些与系统 ...

  4. MSIL实用指南-生成if...else...语句

    if...else...语句是非常重要的选择语句,它的生成一般需要ILGenerator的DefineLabel方法和MarkLabel方法,以及Brtrue_S和Br_S指令. 一.DefineLa ...

  5. Linux背景知识(1)RedHat和Centos

    Redhat有收费的商业版和免费的开源版,商业版的业内称之为RHEL(Red Hat Enterprise Linux)系列, 而这个CentOS(Community ENTerprise Opera ...

  6. SpringBoot入门:Spring Data JPA 和 JPA(理论)

    参考链接: Spring Data JPA - Reference Documentation Spring Data JPA--参考文档 中文版 纯洁的微笑:http://www.ityouknow ...

  7. EasyUI 冻结列

    一.如果是js绘制的,设置frozenColumn属性就可以,frozenColumn 属性和 columns 属性都是设置列,frozenColumn是设置冻结列 $('#tt').datagrid ...

  8. Mysql变量列表

    变量表解释 (https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html)

  9. 深度理解DOM拷贝clone()

    克隆节点是DOM的常见操作,jQuery提供一个clone方法,专门用于处理dom的克隆: .clone()方法深度 复制所有匹配的元素集合,包括所有匹配元素.匹配元素的下级元素.文字节点. clon ...

  10. Python/Django-Web原理(一)

    Python/Django-Web原理(一) websocket webSocket协议是基于TCP的一种新的协议.WebSocket最初在HTML规范中被引用为TCP连接,作为基于TCP的套接字AP ...