【BZOJ2186】【SDOI2008】沙拉公主的困惑
Description
大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票。房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量。现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可。R是一个质数。
Input
第一行为两个整数T,R。R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,每行一对整数N,M,见题目描述 m<=n
Output
共T行,对于每一对N,M,输出1至N!中与M!素质的数的数量对R取模后的值
Sample Input
1 11
4 2
Sample Output
1
Hint
对于100%的数据,$1 \leq N , M \leq 10000000 $
Solution
由于\((m!)|(n!)\) 所以根据欧拉函数的性质,\(n!\)内与\(m!\)的数的个数为\(Ans=\frac {n!}{m!} \varphi (m!)\)
根据欧拉函数定义:\(为的素因子\varphi (N) = N\frac{\prod_{i=1}^k p_i-1}{\prod_{i=1}^k p_i},p_i为N的素因子\)
有\(\varphi(m!)=m!\frac{\prod_{i=1}^k p_i-1}{\prod_{i=1}^k p_i}\)其中,\(p_i\)为不超过m的素数
根据计算公式,有$$Ans=\frac {n!}{m!} \varphi (m!)=\frac {n!}{m!} m!\frac{\prod_{i=1}^k p_i-1}{\prod_{i=1}^k p_i} = n! \frac{\prod_{i=1}^k p_i-1}{\prod_{i=1}^k p_i} $$
维护3个信息,\(i!\),\(\prod_{i=1}^k p_i-1\),\((\prod_{i=1}^k p_i-1)^{-1}\)即可O(1)回答询问。
时间复杂度\(O(max(n))\).
Code
#include <stdio.h>
#define MN 10000005
#define R register
#define ll long long
#define file(x) freopen(#x".in","r",stdin),freopen(#x".out","w",stdout)
#define endfile fclose(stdin),fclose(stdout)
inline int read(){
R int x; R bool f; R char c;
for (f=0; (c=getchar())<'0'||c>'9'; f=c=='-');
for (x=c-'0'; (c=getchar())>='0'&&c<='9'; x=(x<<3)+(x<<1)+c-'0');
return f?-x:x;
}
int k[MN],inv[MN],pr[MN],fac[MN],n,m,T,p,pn;bool b[MN];
inline void prework(){
k[1]=1;for (R int i=2; i<=1e7; ++i){
k[i]=(ll)k[i-1]*i%p;
if (!b[i]) pr[++pn]=i;
for (R int j=1; j<=pn&&(ll)pr[j]*i<=1e7; ++j){
b[i*pr[j]]=1;
if (i%pr[j]==0) break;
}
}inv[1]=1;for (R int i=2; i<=1e7; ++i){
if (i>=p) break;
inv[i]=(ll)(p-p/i)*inv[p%i]%p;
}fac[1]=1;for (R int i=2; i<=1e7; ++i){
fac[i]=fac[i-1];
if (!b[i]) fac[i]=(ll)fac[i]*(i-1)%p*inv[i%p]%p;
}
}
int main(){
T=read(),p=read();
prework();while(T--){
n=read(),m=read();
printf("%lld\n",(ll)k[n]*fac[m]%p);
}
}
【BZOJ2186】【SDOI2008】沙拉公主的困惑的更多相关文章
- BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 6103 Solved: 2060[Submit][S ...
- BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 5003 Solved: 1725 [Submit] ...
- [bzoj2186][Sdoi2008]沙拉公主的困惑_数论
沙拉公主的困惑 bzoj-2186 Sdoi-2008 题目大意:求N!中与M!互质的数的个数. 注释:$1\le N,M\le 10^7$. 想法:显然是求$\phi(M!)$.这东西其实只需要将数 ...
- BZOJ2186: [Sdoi2008]沙拉公主的困惑
传送门 常规数论题,利用欧拉函数的相关性质. 题求$[1,N!]$中与$M!$互质的数的个数,且$M \leq N$.然后根据欧拉函数的相关性质很容易得出这道题的答案为$\frac{\phi (M!) ...
- BZOJ2186 SDOI2008沙拉公主的困惑(数论)
由于n!是m!的倍数,而对于每个与m!互质且小于m!的数x,x+m!.x+2*m!……也与其互质,所以答案即为(n!/m!)*φ(m!). φ(m!)=m!*∏(1-1/pi).其中的pi即为1~m中 ...
- [bzoj2186][Sdoi2008]沙拉公主的困惑——数论
题目大意 求 \[\sum_{i = 1}^{N!} [gcd(i, M!) = 1]\] 题解 显然,题目就是求 \[N!(1-\frac{1}{p_1})(1-\frac{1}{p_2})...\ ...
- 【数论】【欧拉函数】【筛法求素数】【乘法逆元】【快速幂取模】bzoj2186 [Sdoi2008]沙拉公主的困惑
http://www.cnblogs.com/BLADEVIL/p/3490321.html http://www.cnblogs.com/zyfzyf/p/3997986.html 翻了翻题解,这两 ...
- 【BZOJ2186】[Sdoi2008]沙拉公主的困惑 线性筛素数
[BZOJ2186][Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M! ...
- 【bzoj2186】: [Sdoi2008]沙拉公主的困惑 数论-欧拉函数
[bzoj2186]: [Sdoi2008]沙拉公主的困惑 考虑当 gcd(a,b)=1 则 gcd(nb+a,b)=1 所以[1,N!]与M!互质的个数就是 筛出[1,M]所有的素数p[i] 以及逆 ...
- 【bzoj2186】[Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 3303 Solved: 1129[Submit][S ...
随机推荐
- 2017-2018-1 我爱学Java 第二周 作业
Android Game Discussion Questions Answers 20162309邢天岳 20162311张之睿 20162312张家铖 20162313苑洪铭 20162324春旺 ...
- swift 编写欢迎界面-- ios开发
转载自:http://blog.csdn.net/u014455765/article/details/49622947 现在很多iOS开发人员都从oc转向Swift, swift 也必将成为ios开 ...
- Flask 学习 四 数据库
class Role(db.Model): __tablename__='roles' id = db.Column(db.Integer,primary_key=True) name = db.Co ...
- 儿童节,我们从零开始——Python入门资源推荐
原创 2017-06-01 玄魂工作室 玄魂工作室 今天是六一儿童节,首先祝所有的小朋友身体健康,能永远生活在一个没有战争,没有压迫的世界里,永远快乐. 上一篇文章,很多人都对Python的各种书籍感 ...
- restful架构风格设计准则(五)用户认证和session管理
读书笔记,原文链接:http://www.cnblogs.com/loveis715/p/4669091.html,感谢作者! Authentication REST提倡无状态约束,这就要求:用户状态 ...
- C#微信公众号——消息处理
当普通微信用户向公众账号发消息时,微信服务器将POST消息的XML数据包到开发者填写的URL. 一.接收POST请求,处理XML信息 public void ProcessRequest(HttpC ...
- 前端之HTML内容
一.HTML介绍 1.Web服务本质 当我们在浏览器中输入一个url后打开一个页面这个过程实质是一个网络编程中的sockt服务端接受指令并发送指令的一个过程.本质顺序是: 浏览器发请求——>HT ...
- SpringMVC(一):搭建一个SpringMVC helloword项目
操作步骤: 1)下载spring framework开发包,给eclipse安装spring开发插件,如何安装开发插件&下载开发包请参考我的博文:<Spring(一):eclipse上安 ...
- 收藏:视频网站(JavaEE+FFmpeg)/Nginx+ffmpeg实现流媒体直播点播系统
FFmpeg安装(windows环境)http://www.cnblogs.com/xiezhidong/p/6924775.html 最简单的视频网站(JavaEE+FFmpeg)http://bl ...
- 最新IP数据库 存储优化 查询性能优化 每秒解析上千万
高性能IP数据库格式详解 每秒解析1000多万ip qqzeng-ip-ultimate.dat 3.0版 编码:UTF8 字节序:Little-Endian 返回规范字段(如:亚洲|中国| ...