【BZOJ2186】【SDOI2008】沙拉公主的困惑
Description
大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票。房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量。现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可。R是一个质数。
Input
第一行为两个整数T,R。R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,每行一对整数N,M,见题目描述 m<=n
Output
共T行,对于每一对N,M,输出1至N!中与M!素质的数的数量对R取模后的值
Sample Input
1 11
4 2
Sample Output
1
Hint
对于100%的数据,$1 \leq N , M \leq 10000000 $
Solution
由于\((m!)|(n!)\) 所以根据欧拉函数的性质,\(n!\)内与\(m!\)的数的个数为\(Ans=\frac {n!}{m!} \varphi (m!)\)
根据欧拉函数定义:\(为的素因子\varphi (N) = N\frac{\prod_{i=1}^k p_i-1}{\prod_{i=1}^k p_i},p_i为N的素因子\)
有\(\varphi(m!)=m!\frac{\prod_{i=1}^k p_i-1}{\prod_{i=1}^k p_i}\)其中,\(p_i\)为不超过m的素数
根据计算公式,有$$Ans=\frac {n!}{m!} \varphi (m!)=\frac {n!}{m!} m!\frac{\prod_{i=1}^k p_i-1}{\prod_{i=1}^k p_i} = n! \frac{\prod_{i=1}^k p_i-1}{\prod_{i=1}^k p_i} $$
维护3个信息,\(i!\),\(\prod_{i=1}^k p_i-1\),\((\prod_{i=1}^k p_i-1)^{-1}\)即可O(1)回答询问。
时间复杂度\(O(max(n))\).
Code
#include <stdio.h>
#define MN 10000005
#define R register
#define ll long long
#define file(x) freopen(#x".in","r",stdin),freopen(#x".out","w",stdout)
#define endfile fclose(stdin),fclose(stdout)
inline int read(){
R int x; R bool f; R char c;
for (f=0; (c=getchar())<'0'||c>'9'; f=c=='-');
for (x=c-'0'; (c=getchar())>='0'&&c<='9'; x=(x<<3)+(x<<1)+c-'0');
return f?-x:x;
}
int k[MN],inv[MN],pr[MN],fac[MN],n,m,T,p,pn;bool b[MN];
inline void prework(){
k[1]=1;for (R int i=2; i<=1e7; ++i){
k[i]=(ll)k[i-1]*i%p;
if (!b[i]) pr[++pn]=i;
for (R int j=1; j<=pn&&(ll)pr[j]*i<=1e7; ++j){
b[i*pr[j]]=1;
if (i%pr[j]==0) break;
}
}inv[1]=1;for (R int i=2; i<=1e7; ++i){
if (i>=p) break;
inv[i]=(ll)(p-p/i)*inv[p%i]%p;
}fac[1]=1;for (R int i=2; i<=1e7; ++i){
fac[i]=fac[i-1];
if (!b[i]) fac[i]=(ll)fac[i]*(i-1)%p*inv[i%p]%p;
}
}
int main(){
T=read(),p=read();
prework();while(T--){
n=read(),m=read();
printf("%lld\n",(ll)k[n]*fac[m]%p);
}
}
【BZOJ2186】【SDOI2008】沙拉公主的困惑的更多相关文章
- BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 6103 Solved: 2060[Submit][S ...
- BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 5003 Solved: 1725 [Submit] ...
- [bzoj2186][Sdoi2008]沙拉公主的困惑_数论
沙拉公主的困惑 bzoj-2186 Sdoi-2008 题目大意:求N!中与M!互质的数的个数. 注释:$1\le N,M\le 10^7$. 想法:显然是求$\phi(M!)$.这东西其实只需要将数 ...
- BZOJ2186: [Sdoi2008]沙拉公主的困惑
传送门 常规数论题,利用欧拉函数的相关性质. 题求$[1,N!]$中与$M!$互质的数的个数,且$M \leq N$.然后根据欧拉函数的相关性质很容易得出这道题的答案为$\frac{\phi (M!) ...
- BZOJ2186 SDOI2008沙拉公主的困惑(数论)
由于n!是m!的倍数,而对于每个与m!互质且小于m!的数x,x+m!.x+2*m!……也与其互质,所以答案即为(n!/m!)*φ(m!). φ(m!)=m!*∏(1-1/pi).其中的pi即为1~m中 ...
- [bzoj2186][Sdoi2008]沙拉公主的困惑——数论
题目大意 求 \[\sum_{i = 1}^{N!} [gcd(i, M!) = 1]\] 题解 显然,题目就是求 \[N!(1-\frac{1}{p_1})(1-\frac{1}{p_2})...\ ...
- 【数论】【欧拉函数】【筛法求素数】【乘法逆元】【快速幂取模】bzoj2186 [Sdoi2008]沙拉公主的困惑
http://www.cnblogs.com/BLADEVIL/p/3490321.html http://www.cnblogs.com/zyfzyf/p/3997986.html 翻了翻题解,这两 ...
- 【BZOJ2186】[Sdoi2008]沙拉公主的困惑 线性筛素数
[BZOJ2186][Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M! ...
- 【bzoj2186】: [Sdoi2008]沙拉公主的困惑 数论-欧拉函数
[bzoj2186]: [Sdoi2008]沙拉公主的困惑 考虑当 gcd(a,b)=1 则 gcd(nb+a,b)=1 所以[1,N!]与M!互质的个数就是 筛出[1,M]所有的素数p[i] 以及逆 ...
- 【bzoj2186】[Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 3303 Solved: 1129[Submit][S ...
随机推荐
- Beta Scrum博客集
听说 Beta Scrum Day 1
- C语言结构体作业
一.PTA实验作业 题目1:6-3 结构体数组中查找指定编号人员 1. 本题PTA提交列表 2. 设计思路 定义一个结构体指针*p for i=0 to i=7 如果std+i的编号与输入的编号一样 ...
- 学号:201621123032 《Java程序设计》第4周学习总结
1:本周学习总结 1. 写出你认为本周学习中比较重要的知识点关键词 继承,多态,父类object,抽象类 2. 尝试使用思维导图将这些关键词组织起来 2:书面作业 2.1: 面向对象设计 1. 讲故事 ...
- 200行Python代码实现2048
200行Python代码实现2048 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到桌面 ...
- Count on a tree
bzoj 2588: Spoj 10628. Count on a tree http://www.lydsy.com/JudgeOnline/problem.php?id=2588 Descrip ...
- H5新特性之webWorker
众所周知javascript是单线程语言,这就是js开发难度较低的原因了,因为不需要解决多线程的资源共享问题(例如死锁),但是单线程性能并不好,因此多了一个webWorker实现js的多进程来提升js ...
- vue-cli项目中,全局引入jquery
命令行执行 npm install --save jquery 找到webpack.base.conf.js文件,写入代码: const webpack = require('webpack') 在m ...
- 用javascript做别踩白块游戏1
初学Javascript做的一个别踩白块小游戏,代码简陋,如下: <!DOCTYPE html> <html> <head> <!-- 禁用缩放功能 --&g ...
- CURL学习总结(1)
1.curl是什么? 百度百科定义: curl是利用URL语法在命令行方式下工作的开源文件传输工具.它被广泛应用在Unix.多种Linux发行版中,并且有DOS和Win32.W ...
- python入门(7)Python程序的风格
python入门(7)Python程序的风格 Python采用缩进方式,写出来的代码就像下面的样子: # print absolute value of an integer: a = 100 if ...