[cf453e]Little Pony and Lord Tirek
来自FallDream的博客,未经允许,请勿转载,谢谢。
更博客= =
有n个数,每个数字都有一个初始大小ai和最大值mi,然后每秒会增加ri,你需要回答m个发生时间依此增大的询问,每次询问区间和并且将区间的所有数字变成0.
n,m<=10^5
考虑直接用set维护颜色段,这样操作到的段数是O(n)的。然后特殊处理开始的情况,就变成了若干个询问,每次询问一个区间的数全部从0开始,一定时间之后的和。
将这些询问排序,并且将所有数字到达最大值的时间排序,用两棵线段树来模拟就行了,复杂度O(nlogn)
#include<algorithm>
#include<iostream>
#include<cstdio>
#include<cmath>
#include<set>
#define MN 100000
#define N 131072
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
struct data{int l,r,t,x;
data(int _l,int _r,int _t,int _x){l=_l;r=_r;t=_t;x=_x;}
data(int k){l=k;r=;}
bool operator <(const data&b)const{return l==b.l?r<b.r:l<b.l;}
};
set<data> s;long long Ans[MN+],T1[N*+],T2[N*+];
int n,m,top,a[MN+],mx[MN+],R[MN+],rk[MN+],tms[MN+];
struct ques{int l,r,t,id;}q[MN*+];
int Calc(int t,int x,int r,int m){return (int)min((long long)m,x+1LL*r*t);}
bool cmp(const ques&a,const ques&b){return a.t<b.t;}
bool cmp2(int x,int y){return tms[x]<tms[y];}
void Renew(long long*T,int x,int v){for(T[x+=N]+=v;x>>=;)T[x]=T[x<<]+T[x<<|];}
long long Query(long long*T,int l,int r)
{
long long sum=;
for(l+=N-,r+=N+;l^r^;l>>=,r>>=)
{
if(~l&) sum+=T[l+];
if( r&) sum+=T[r-];
}
return sum;
}
int main()
{
n=read();
for(int i=;i<=n;++i)
{
a[i]=read();mx[i]=read();R[i]=read();tms[i]=R[i]?(int)ceil((double)mx[i]/R[i]):2e9;
s.insert(data(i,i,,a[i])); rk[i]=i;
}
m=read();
for(int i=;i<=m;++i)
{
int t=read(),l=read(),r=read();
set<data>::iterator it=s.lower_bound(data(l));
for(;it!=s.end()&&it->l<=r;it=s.lower_bound(data(l)))
{
if(it->r>r) s.insert(data(r+,it->r,it->t,it->x));
if(it->r==it->l) Ans[i]+=Calc(t-it->t,it->x,R[it->r],mx[it->r]);
else q[++top]=(ques){it->l,min(it->r,r),t-it->t,i};
s.erase(it);
}
for(;it!=s.begin()&&(--it)->r>=l;it=s.lower_bound(data(l)))
{
if(it->r>r) s.insert(data(r+,it->r,it->t,it->x));
if(it->l<l) s.insert(data(it->l,l-,it->t,it->x));
q[++top]=(ques){max(it->l,l),min(r,it->r),t-it->t,i};
s.erase(it);
}
s.insert(data(l,r,t,));
}
sort(rk+,rk+n+,cmp2);
sort(q+,q+top+,cmp);
for(int i=;i<=n;++i) Renew(T1,i,R[i]);
for(int i=,j=;i<=top;)
if(j<=n&&tms[rk[j]]<=q[i].t)
{
Renew(T1,rk[j],-R[rk[j]]);
Renew(T2,rk[j],mx[rk[j]]);
++j;
}
else
{
Ans[q[i].id]+=1LL*q[i].t*Query(T1,q[i].l,q[i].r)+Query(T2,q[i].l,q[i].r);
++i;
}
for(int i=;i<=m;++i) printf("%lld\n",Ans[i]);
return ;
}
[cf453e]Little Pony and Lord Tirek的更多相关文章
- Codeforces 453E - Little Pony and Lord Tirek(二维线段树+ODT)
Codeforces 题目传送门 & 洛谷题目传送门 一道难度 *3100 的 DS,而且被我自己搞出来了! 不过我终究还是技不如人,因为这是一个 \(n\log^2n\) + 大常数的辣鸡做 ...
- 2021record
2021-10-14 P2577 [ZJOI2004]午餐 2021-10-13 CF815C Karen and Supermarket(小小紫题,可笑可笑) P6748 『MdOI R3』Fall ...
- CF数据结构练习
1. CF 438D The Child and Sequence 大意: n元素序列, m个操作: 1,询问区间和. 2,区间对m取模. 3,单点修改 维护最大值, 取模时暴力对所有>m的数取 ...
- CF453(Div1 简单题解)
A .Little Pony and Expected Maximum pro:给定M,N,表示一个M面的骰子,甩N次,问出现的最大的数的期望. sol:容斥,f(i)表示最大数<=i的期望,那 ...
- CF453C Little Pony and Summer Sun Celebration (DFS)
http://codeforces.com/contest/456 CF454E Codeforces Round #259 (Div. 1) C Codeforces Round #259 (Di ...
- CF453B Little Pony and Harmony Chest (状压DP)
CF453B CF454D Codeforces Round #259 (Div. 2) D Codeforces Round #259 (Div. 1) B D. Little Pony and H ...
- codeforces 374A Inna and Pink Pony 解题报告
题目链接:http://codeforces.com/problemset/problem/374/A 题目意思:给出一个 n 行 m 列 的棋盘,要将放置在坐标点为(i, j)的 candy 移动 ...
- CodeForces 454C Little Pony and Expected Maximum
Little Pony and Expected Maximum Time Limit:1000MS Memory Limit:262144KB 64bit IO Format:%I6 ...
- Codeforces Round #259 (Div. 2) C - Little Pony and Expected Maximum (数学期望)
题目链接 题意 : 一个m面的骰子,掷n次,问得到最大值的期望. 思路 : 数学期望,离散时的公式是E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) p(xi)的是 ...
随机推荐
- Archlinux安装和使用技巧
一 准备工作 1 文件下载及启动盘制作 文件可以在https://mirrors.ustc.edu.cn/,这是个中科大的镜像网,选择如下: 下载完成后,就是制作一个启动盘,我使用的是Linux下强 ...
- 201621123057 《Java程序设计》第14周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结与数据库相关内容. 2. 使用数据库技术改造你的系统 2.1 简述如何使用数据库技术改造你的系统.要建立什么表?截图你的表设计. 答 ...
- XML使用练习
#!/usr/bin/env python # -*- coding:utf-8 -*- import requests from xml.etree import ElementTree as ET ...
- JAVA_SE基础——45.基本类型变量.值交换[独家深入解析]
需求:定义一个函数交换两个基本类型变量的值. 相信看过我前面的文章的同学都应该看的懂我以下的代码: class Demo2 { public static void main(String[] arg ...
- 【Learning】 多项式的相关计算
约定的记号 对于一个多项式\(A(x)\),若其最高次系数不为零的项是\(x^k\),则该多项式的次数为\(k\). 记为\(deg(A)=k\). 对于\(x\in(k,+ \infty)\),称\ ...
- LeetCode & Q268-Missing Number-Easy
Array Math Bit Manipulation Description: Given an array containing n distinct numbers taken from 0, ...
- python random 模块的用法
Python中的random模块用于生成随机数.下面介绍一下random模块中最常用的几个函数. random.random random.random()用于生成一个0到1的随机符点数: 0 < ...
- kafka之zookeeper 节点
1.zookeeper 节点 kafka 在 zookeeper 中的存储结构如下图所示:
- linux ubunt 安装软件的前期准备——更新源的更换
如果是高手,请翻到页面最下方,更换更新源的总结,直接操作即可 可能会优点啰嗦,但是认真看,一定能解决问题~~希望对大家有帮助~ 最近在熟悉linux环境,自己安装了一个ubuntu虚拟机. 很多朋友问 ...
- WebStorm2018破解
参考网站http://www.sdbeta.com/wg/2018/0302/220048.html修改整理如下: webstorm 2018.1正式版破解summary jetbrainscrack ...