计蒜客NOIP模拟赛(2) D2T2紫色百合
【问题描述】
“牵着你的手的是她,路边开满了紫色的百合花……”
你从梦中醒来,却依然忘不了梦中的她百合花,每朵百合花都有一个权值,在二进制下写成一行‘1’,第i朵紫色百合的权值在二进制下写成i个‘1’。你想挑出其中一些组成“一束百合花”且价值在二进制下恰好为一个‘1’后面P个‘0’,那么有多少种挑选方案呢?
定义“一束百合花”的价值为这些百合花组成的集合的所有子集的权值乘积的和(空集的权值乘积算1)。如价值为1和3组成的一束百合花价值为1+1+3+1*3=8
【输入格式】
一行两个正整数N,P,含义如题目中所示n,p<=100000
【输出格式】
一个整数代表方案数模 998244353 的结果
【样例输入1】
3 3
【样例输出1】
2
【样例输入2】
233 666
【样例输出2】
572514965
稍稍运用一下数学知识发现题目要求的是选出的集合每个元素+1之后的乘积等于2^P的方案数,取个log就变成了↓
在1~N选若干个数使得总和等于P,求方案数
然后用普通的背包DP可以就拿到60分了
然后我们发现,由于物品大小是1~N,所以最多选取O(sqrt(P))个物品,背包就满了
满分做法可以用状态f[i][j]表示选i个物品,占容量为j的方案数
由于每个背包是不同的,所以根据已选的最小的物品分类讨论一下:
如果最小的物品是1,相当于i-1个物品凑出了j-i的大小,然后整体+1
如果最小的物品不是1,相当于i个物品凑出了j-i的大小,然后整体+1
需要注意我们要防止出现选择了大小为N+1的物品的情况,所以需要减去
得到递推式f[i][j]=f[i-1][j-i]+f[i][j-i]-f[i-1][j-(N+1)]
时间复杂度O(Nsqrt(N))
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long lol;
lol Mod=;
int f[][];
lol ans;
lol n,p;
int main()
{lol i,j;
cin>>n>>p;
f[][]=;
for (i=;i*(i+)/<=p;i++)
{
for (j=i;j<=p;j++)
{
f[i][j]=f[i-][j-i]+f[i][j-i];
if (j>=(n+)) f[i][j]-=f[i-][j-n-];
if (f[i][j]<) f[i][j]+=Mod;
if (f[i][j]>=Mod) f[i][j]-=Mod;
}
ans=(ans+f[i][p])%Mod;
}
cout<<ans%Mod;
}
【问题描述】
“牵着你的手的是她,路边开满了紫色的百合花……”
你从梦中醒来,却依然忘不了梦中的她百合花,每朵百合花都有一个权值,在二进制下写成一行‘1’,第i朵紫色百合的权值在二进制下写成i个‘1’。你想挑出其中一些组成“一束百合花”且价值在二进制下恰好为一个‘1’后面P个‘0’,那么有多少种挑选方案呢?
定义“一束百合花”的价值为这些百合花组成的集合的所有子集的权值乘积的和(空集的权值乘积算1)。如价值为1和3组成的一束百合花价值为1+1+3+1*3=8
【输入格式】
一行两个正整数N,P,含义如题目中所示
【输出格式】
一个整数代表方案数模 998244353 的结果
【样例输入1】
3 3
【样例输出1】
2
【样例输入2】
233 666
【样例输出2】
572514965
【数据范围与约定】
测试点编号 |
N |
P |
1 |
≤ |
≤ |
2 |
≤ |
≤ |
3 |
≤ |
≤ |
4 |
≤ |
≤ |
5 |
≤ |
≤ |
6 |
≤ |
≤ |
7 |
≤ |
≤ |
8 |
≤ |
≤ |
9 |
≤ |
≤ |
10 |
≤ |
≤ |
计蒜客NOIP模拟赛(2) D2T2紫色百合的更多相关文章
- 计蒜客NOIP模拟赛4 D2T2 跑步爱天天
YOUSIKI 在 noip2016 的一道<天天爱跑步>的题爆零后,潜心研究树上问题,成为了一代大师,于是皮皮妖为了测验他,出了一道题,名曰<跑步爱天天>. 有一个以 1 为 ...
- 计蒜客NOIP模拟赛D2T2 直线的交点
伦伦刚刚在高中学习了解析几何,学会了计算两条直线的交点.这天,老师给她布置了一道作业.在平面上有 nnn 条直线,他们之间有若干交点.给定一对平板(两条平行的直线),问这有多少对直线,他们的交点在这一 ...
- 计蒜客NOIP模拟赛6 D1T1Diamond-square
Diamond-square 算法是一种能够用于生成噪声的算法,现在我们考虑这个算法的一个变种. 你有一个 2^n\times 2^n2n×2n 的网格,一共有 (2^n+1)^2(2n ...
- 计蒜客NOIP模拟赛4 D2T1 鬼脚图
鬼脚图,又称画鬼脚,在日本称作阿弥陀签,是一种经典游戏,也是一种简易的决策方法,常常用来抽签或决定分配组合. 下图就是一张鬼脚图,其包含若干条竖线和若干条横线.请注意,横线只能水平连接相邻的两条竖线, ...
- 计蒜客 NOIP模拟赛(3) D1T1火山喷发
火山喷发对所有附近的生物具有毁灭性的影响.在本题中,我们希望用数值来模拟这一过程. 在环境里有 nnn 个生物分别具有 A1,A2,⋯,An点生命值,一次火山喷发总计 M轮,每轮造成 1点伤害,等 ...
- 计蒜客NOIP模拟赛(2) D1T1邻家男孩
凡是一个具有领导力的孩子.现实生活中他特别喜欢玩一个叫做 UNO 的纸牌游戏,他也总是带着其他小朋友一起玩,然后战胜他们.慢慢地,他厌倦了胜利,于是准备发明一种新的双人纸牌游戏. 初始时,每个人手中都 ...
- 计蒜客NOIP模拟赛5 D1T1 机智的 AmyZhi
那年一个雨季,AmyZhi 在校门外弯身买参考书. 这时 SiriusRen 走过来,一言不合甩给她一道“自认为”很难的题: --------------- 给你一个数字 NN(NN 的范围是 11 ...
- 计蒜客NOIP模拟赛4 D1T3 小X的佛光
小 X 是远近闻名的学佛,平日里最喜欢做的事就是蒸发学水. 小 X 所在的城市 X 城是一个含有 N 个节点的无向图,同时,由于 X 国是一个发展中国家,为了节约城市建设的经费,X 国首相在建造 X ...
- 计蒜客NOIP模拟赛4 D1T2小X的密室
小 X 正困在一个密室里,他希望尽快逃出密室. 密室中有 N 个房间,初始时,小 X 在 1 号房间,而出口在 N 号房间. 密室的每一个房间中可能有着一些钥匙和一些传送门,一个传送门会单向地创造一条 ...
随机推荐
- 配置 CSV Data Set Config 来参数化新增客户信息操作
1.首先根据新增客户信息的http请求,来确定需要参数化的变量,选取符合测试需求且经常变化或未来会变化的变量为需要参数化的变量,如本文中的客户端名称(sys_name).描述(description) ...
- Beta冲刺置顶随笔
项目名称:城市安全风险管控系统 小组成员: 张梨贤.林静.周静平.黄腾飞 Beta冲刺随笔 Beta预备 Beta冲刺Day1 Beta冲刺Day2 Beta冲刺Day3 Beta冲刺Day4 Bet ...
- Beta冲刺 第一天
Beta冲刺 第一天 1. 昨天的困难 由于今天还是第一天,所以暂时没有昨天的困难. 2. 今天解决的进度 潘伟靖: 对代码进行了review 1.将某些硬编码改为软编码 2.合并了一些方法,简化代码 ...
- 201621123025《Java程序设计》第二周学习总结
1.本周学习总结 以几个关键词描述本周的学习内容.并将关键词之间的联系描述或绘制出来. 答:java的两种数据类型:基本数据类型和引用数据类型:==与equals的区别:动态数组. 2.书面作业 1. ...
- C语言--第0周作业
1.翻阅邹欣老师博客关于师生关系博客,并回答下列问题: 1)最理想的师生关系是健身教练和学员的关系,在这种师生关系中你期望获得来自老师的哪些帮助? 答: 若教练和学员的关系是最理想的师生关系,那就意味 ...
- 2017-2018-1 我爱学Java 第四五周 作业
<打地鼠>Android游戏--需求规格说明书 工作流程 组员分工及工作量比例 <需求规格说明书>的码云链接 总结与反思 参考资料 工作流程 小组成员预先参考蓝墨云班课第八周中 ...
- Vim 游戏 2048
给大家介绍一款可以在Vim里面玩的游戏 vim2048. 界面如图: 操作非常简单,可以用 hjkl 或者 上下左右方向键移动 项目开源地址为: https://github.com/wsdjeg/v ...
- LeetCode & Q217-Contains Duplicate-Easy
Array Hash Table Description: Given an array of integers, find if the array contains any duplicates. ...
- Netty事件监听和处理(下)
上一篇 介绍了事件监听.责任链模型.socket接口和IO模型.线程模型等基本概念,以及Netty的整体结构,这篇就来说下Netty三大核心模块之一:事件监听和处理. 前面提到,Netty是一个NIO ...
- OAuth2.0学习(1-5)授权方式2-简化模式(implicit grant type)
授权方式2-简化模式(implicit grant type) 简化模式(implicit grant type)不通过第三方应用程序的服务器,直接在浏览器中向认证服务器申请令牌,跳过了"授 ...