●BZOJ 4822 [Cqoi2017]老C的任务
题链:
https://www.luogu.org/problemnew/show/P3755 (洛谷上数据范围给全了的)
题解:
树状数组,离线询问
(本来想弄一个二维树状数组/二维RMQ,然后直接查询,但是空间不够用。)
做法如下,可以考虑把每个询问拆为四个, 即:四个二维前缀和。
然后把"拆过的询问操作"和"基站插入操作"排序,
排序规则:若 x 不同时,x 小的排在前面,
否则 y 不同时,y 小的排在前面,
否则把"基站插入操作"排在"拆过的询问操作"前面。
离散化 y 后
然后依次枚举排好序的操作,对一维树状数组进行修改和查询操作就好了。
这样可以保证对于每个前缀询问,其覆盖的区域里的基站信息都已经被统计。
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXN 100500
#define ll long long
#define filein(x) freopen(#x".in","r",stdin)
#define fileout(x) freopen(#x".out","w",stdout)
using namespace std;
struct Question{
int cnt; ll sum[5];
ll Ans(){
return sum[4]-sum[3]-sum[2]+sum[1];
}
}Q[MAXN];
struct Command{
int x,y,t,b;
bool operator <(const Command & rtm) const{
if(x!=rtm.x) return x<rtm.x;
if(y!=rtm.y) return y<rtm.y;
if(t!=rtm.t) return t<rtm.t;
return 1;
}
}C[MAXN*5];
struct BIT{
ll A[MAXN*3],ret;int N;
void Reset(int n){
N=n;
memset(A,0,sizeof(A));
}
int lowbit(int x){
return x&-x;
}
void Modify(int p,int x){
while(p<=N) A[p]+=x,p+=lowbit(p);
}
ll Query(int p){
ret=0; while(p) ret+=A[p],p-=lowbit(p);
return ret;
}
}T;
int N,M,Cnt;
int main(){
static int tmp[MAXN*3],tnt;
scanf("%d%d",&N,&M);
for(int i=1,x,y,b;i<=N;i++){
scanf("%d%d%d",&x,&y,&b);
C[++Cnt]=(Command){x,y,0,b};
tmp[++tnt]=y;
}
for(int i=1,x1,y1,x2,y2;i<=M;i++){
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
x1--; y1--; Q[i].cnt=0;
C[++Cnt]=(Command){x1,y1,1,i};
C[++Cnt]=(Command){x1,y2,1,i};
C[++Cnt]=(Command){x2,y1,1,i};
C[++Cnt]=(Command){x2,y2,1,i};
tmp[++tnt]=y1; tmp[++tnt]=y2;
}
sort(C+1,C+Cnt+1);
sort(tmp+1,tmp+tnt+1);
tnt=unique(tmp+1,tmp+tnt+1)-tmp-1;
T.Reset(tnt);
for(int i=1,y;i<=Cnt;i++){
y=lower_bound(tmp+1,tmp+tnt+1,C[i].y)-tmp;
if(C[i].t) Q[C[i].b].sum[++Q[C[i].b].cnt]=T.Query(y);
else T.Modify(y,C[i].b);
}
for(int i=1;i<=M;i++)
printf("%lld\n",Q[i].Ans());
return 0;
}
●BZOJ 4822 [Cqoi2017]老C的任务的更多相关文章
- bzoj 4822: [Cqoi2017]老C的任务
4822: [Cqoi2017]老C的任务 练手速... #include <iostream> #include <cstdio> #include <cstring& ...
- BZOJ 4822 [Cqoi2017]老C的任务 ——树状数组
直接离散化之后用树状数组扫一遍. 把每一个询问拆成四个就可以做了. %Silvernebula 怒写KD-Tree #include <map> #include <cmath> ...
- bzoj 4822: [Cqoi2017]老C的任务【扫描线+树状数组+二维差分】
一个树状数组能解决的问题分要用树套树--还写错了我别是个傻子吧? 这种题还是挺多的,大概就是把每个矩形询问差分拆成四个点前缀和相加的形式(x1-1,y1-1,1)(x2.y2,1)(x1-1,y2,- ...
- bzoj 4823: [Cqoi2017]老C的方块 [最小割]
4823: [Cqoi2017]老C的方块 题意: 鬼畜方块游戏不解释... 有些特殊边,有些四个方块组成的图形,方块有代价,删掉一些方块使得没有图形,最小化代价. 比较明显的最小割,一个图形中必须删 ...
- bzoj 4824: [Cqoi2017]老C的键盘
Description 老 C 是个程序员. 作为一个优秀的程序员,老 C 拥有一个别具一格的键盘,据说这样可以大幅提升写程序的速度,还能让写出来的程序 在某种神奇力量的驱使之下跑得非常快.小 ...
- bzoj 4823 [Cqoi2017]老C的方块——网络流
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4823 一个不合法方案其实就是蓝线的两边格子一定选.剩下两部分四相邻格子里各选一个. 所以这个 ...
- BZOJ 4823: [Cqoi2017]老C的方块
分析: 我觉得我的网络流白学了...QAQ... 其实数据范围本是无法用网络流跑过去的,然而出题者想让他跑过去,也就跑过去了... 看到题目其实感觉很麻烦,不知道从哪里入手,那么仔细观察所给出的有用信 ...
- BZOJ 4823 [Cqoi2017]老C的方块 ——网络流
lrd的题解:http://www.cnblogs.com/liu-runda/p/6695139.html 我还是太菜了.以后遇到这种题目应该分析分析性质的. 网络流复杂度真是$O(玄学)$ #in ...
- BZOJ 4824 [Cqoi2017]老C的键盘 ——树形DP
每一个限制条件相当于一条有向边, 忽略边的方向,就成了一道裸的树形DP题 同BZOJ3167 唯一的区别就是这个$O(n^3)$能过 #include <map> #include < ...
随机推荐
- 201421123042 《Java程序设计》第10周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常相关内容. 2. 书面作业 本次PTA作业题集异常 1. 常用异常 结合题集题目7-1回答 1.1 自己以前编写的代码中经常出现 ...
- caffe使用ctrl-c不能保存模型
caffe使用Ctrl-c 不能保存模型: 是因为使用的是 tee输出日志 解决方法:kill -s SIGINT <proc_id> 或者使用 GLOG_log_dir=/path/to ...
- WPF treeview扩展
记录一下工作中遇到的问题,以便以后忘记了可以来看. 在工作中遇到一个问题,就是要实现类型如下的界面,没有使用Telerik和Dev库.本来最开始是想使用Datagrid,但不知道怎么实现treevie ...
- c 存储类型
1,c语言中的存储类型(定义变量和函数的可见范围和生命周期)这些说明符放置在它们所修饰的类型之前.下面列出 C 程序中可用的存储类: auto register static extern 2,aut ...
- jquery ajax file upload NET MVC 无刷新文件上传
网上有各种各样的文件上传方法,有基于JS框架的.也有基于flash swf插件的. 这次分享一个比较简单而且实用能快速上手的文件上传方法,主要步骤: 1.引用Jquery包,我用的是jquery-1. ...
- Python内置函数(46)——format
英文文档: format(value[, format_spec]) Convert a value to a "formatted" representation, as con ...
- “认证发布”和“获取展示”,如何在 SharePoint 中正确使用 RSS Feed。
在我们进行的日常工作中,是由一部分信息需要 Share 给其他人或者组织的.SharePoint 虽然支持在某个 Site Collection 中互通信息,但是跨 Site Collection 的 ...
- Spring Framework 的 Assert断言
知识共享才能传播,博采众家之长,才能推陈出新!-- 参考 https://www.cnblogs.com/hwaggLee/p/4778101.html 一.什么是 Assert(断言)? Web 应 ...
- spring2——IOC之Bean的装配
spring容器对于bean的装配提供了两个接口容器分别是"ApplicationContext接口容器"和"BeanFactory接口容器",其中" ...
- python、java实现二叉树,细说二叉树添加节点、深度优先(先序、中序、后续)遍历 、广度优先 遍历算法
数据结构可以说是编程的内功心法,掌握好数据结构真的非常重要.目前基本上流行的数据结构都是c和c++版本的,我最近在学习python,尝试着用python实现了二叉树的基本操作.写下一篇博文,总结一下, ...