Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special Judge

Description

  小园丁 Mr. S 负责看管一片田野,田野可以看作一个二维平面。田野上有 nn 棵许愿树,编号 1,2,3,…,n1,2,3,…,n,每棵树可以看作平面上的一个点,其中第 ii 棵树 (1≤i≤n1≤i≤n) 位于坐标 (xi,yi)(xi,yi)。任意两棵树的坐标均不相同。
  老司机 Mr. P 从原点 (0,0)(0,0) 驾车出发,进行若干轮行动。每一轮,Mr. P 首先选择任意一个满足以下条件的方向:
  为左、右、上、左上 45∘45∘ 、右上 45∘45∘ 五个方向之一。
  沿此方向前进可以到达一棵他尚未许愿过的树。
  完成选择后,Mr. P 沿该方向直线前进,必须到达该方向上距离最近的尚未许愿的树,在树下许愿并继续下一轮行动。如果没有满足条件的方向可供选择,则停止行动。他会采取最优策略,在尽可能多的树下许愿。若最优策略不唯一,可以选择任意一种。
  不幸的是,小园丁 Mr. S 发现由于田野土质松软,老司机 Mr. P 的小汽车在每轮行进过程中,都会在田野上留下一条车辙印,一条车辙印可看作以两棵树(或原点和一棵树)为端点的一条线段。
  在 Mr. P 之后,还有很多许愿者计划驾车来田野许愿,这些许愿者都会像 Mr. P 一样任选一种最优策略行动。Mr. S 认为非左右方向(即上、左上 45∘45∘ 、右上 45∘45∘ 三个方向)的车辙印很不美观,为了维护田野的形象,他打算租用一些轧路机,在这群许愿者到来之前夯实所有“可能留下非左右方向车辙印”的地面。
  “可能留下非左右方向车辙印”的地面应当是田野上的若干条线段,其中每条线段都包含在某一种最优策略的行进路线中。每台轧路机都采取满足以下三个条件的工作模式:
  从原点或任意一棵树出发。
  只能向上、左上 45∘45∘ 、右上 45∘45∘ 三个方向之一移动,并且只能在树下改变方向或停止。
  只能经过“可能留下非左右方向车辙印”的地面,但是同一块地面可以被多台轧路机经过。
  现在 Mr. P 和 Mr. S 分别向你提出了一个问题:
  请给 Mr .P 指出任意一条最优路线。
  请告诉 Mr. S 最少需要租用多少台轧路机。

Input

  输入文件的第 1 行包含 1 个正整数 n,表示许愿树的数量。

  接下来 n 行,第 i+1 行包含 2个整数 xi,yi,中间用单个空格隔开,表示第 i 棵许愿树的坐标。

Output

  输出文件包括 3 行。
  输出文件的第 1 行输出 1 个整数 m,表示 Mr. P 最多能在多少棵树下许愿。
  输出文件的第 2 行输出 m 个整数,相邻整数之间用单个空格隔开,表示 Mr. P 应该依次在哪些树下许愿。
  输出文件的第 3 行输出 1 个整数,表示 Mr. S 最少需要租用多少台轧路机。

Sample Input

  6
  -1 1
  1 1
  -2 2
  0 8
  0 9
  0 10

Sample Output

  3
  2 1 3
  3

Hint

  explanation
  最优路线 2 条可许愿 3 次:(0,0)→(1,1)→(−1,1)→(−2,2)(0,0)→(1,1)→(−1,1)→(−2,2) 或 (0,0)→(0,8)→(0,9)→(0,10)(0,0)→(0,8)→(0,9)→(0,10)。 至少 3 台轧路机,路线是 (0,0)→(1,1)(0,0)→(1,1),(−1,1)→(−2,2)(−1,1)→(−2,2) 和 (0,0)→(0,8)→(0,9)→(0,10)(0,0)→(0,8)→(0,9)→(0,10)。

Solution

  把坐标分别按x,y,x+y,x-y排序即可求出一个点向各个方向能到的点,然后DP求出从原点到一个点最多经过的点数,状态有两种情况,一种是从y坐标小的转移过来,一种是从y坐标相同的转移过来,两种最好分开考虑,细节可能有点多。DP完求出转移路径即可解决第一问,第二问要我们求出最少用几条链才能覆盖所有可能在最优路径上的y坐标增大的边,求出这些边后我们可以用带下界的最小流解决(理解最小流后建图比较容易)。

Solution

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
inline int read()
{
int x,f=;char c;
while((c=getchar())<''||c>'')if(c=='-')f=;
for(x=c-'';(c=getchar())>=''&&c<='';)x=x*+c-'';
return f?x:-x;
}
#define MN 50000
#define MV 50002
#define ME 250000
#define S MV+1
#define T MV+2
#define INF 0x3FFFFFFF
struct node{int x,y,id;}p[MN+];
bool cmp1(const node&a,const node&b){return a.x+a.y==b.x+b.y?a.y<b.y:a.x+a.y<b.x+b.y;}
bool cmp2(const node&a,const node&b){return a.x-a.y==b.x-b.y?a.y<b.y:a.x-a.y<b.x-b.y;}
bool cmp3(const node&a,const node&b){return a.x==b.x?a.y<b.y:a.x<b.x;}
bool cmp4(const node&a,const node&b){return a.y==b.y?a.x<b.x:a.y<b.y;}
int s[MN+],t1[MN+],t2[MN+],t3[MN+],l[MN+],r[MN+],f[MN+],ff[MN+],lf[MN+],rf[MN+],a[MN+],an;
vector<int> v,t[MN+];
namespace maxFlow
{
struct edge{int nx,t,w;}e[ME*+];
int h[MV+],en=,d[MV+],c[MV+],q[MV+],qn;
inline void ins(int x,int y,int w)
{
e[++en]=(edge){h[x],y,w};h[x]=en;
e[++en]=(edge){h[y],x,};h[y]=en;
}
bool bfs()
{
int i,j;
memset(d,,sizeof(d));
for(d[q[i=qn=]=S]=;i<=qn;++i)for(j=c[q[i]]=h[q[i]];j;j=e[j].nx)
if(e[j].w&&!d[e[j].t])d[q[++qn]=e[j].t]=d[q[i]]+;
return d[T];
}
int dfs(int x,int r)
{
if(x==T)return r;
int k,u=;
for(int&i=c[x];i;i=e[i].nx)if(e[i].w&&d[e[i].t]==d[x]+)
{
k=dfs(e[i].t,min(e[i].w,r-u));
u+=k;e[i].w-=k;e[i^].w+=k;
if(u==r)return u;
}
return d[x]=,u;
}
int dinic(){int res=;while(bfs())res+=dfs(S,INF);return res;}
}
void upd(int x,int y)
{
if(ff[y]+>f[x])f[x]=ff[y]+,t[x].clear();
if(ff[y]+==f[x])t[x].push_back(y);
}
void get_ans(int x)
{
a[++an]=x;
int i,j,u=;
if(f[x]==ff[x]){u=;if(p[x].id)get_ans(t[x][]);}
for(i=l[x];u&&i<x;++i)if(f[i]+x-l[x]==ff[x])
{
u=;
for(j=x;--j>i;)a[++an]=j;
for(j=l[x];j<=i;++j)a[++an]=j;
if(p[i].id)get_ans(t[i][]);
}
for(i=r[x];u&&i>x;--i)if(f[i]+r[x]-x==ff[x])
{
u=;
for(j=x;++j<i;)a[++an]=j;
for(j=r[x];j>=i;--j)a[++an]=j;
if(p[i].id)get_ans(t[i][]);
}
}
int d[MN+],u[MN+],c[MN+];
inline void ins(int x,int y){maxFlow::ins(x,y,INF);++c[x];--c[y];}
void dfs(int x)
{
if(d[x])return;
int i,j;d[x]=;
if(f[x]==ff[x]&&!u[x])for(u[x]=,i=;i<t[x].size();++i)ins(t[x][i],x),dfs(t[x][i]);
for(i=l[x];i<x;++i)if(f[i]+x-l[x]==ff[x]&&!u[i])for(u[i]=,j=;j<t[i].size();++j)ins(t[i][j],i),dfs(t[i][j]);
for(i=r[x];i>x;--i)if(f[i]+r[x]-x==ff[x]&&!u[i])for(u[i]=,j=;j<t[i].size();++j)ins(t[i][j],i),dfs(t[i][j]);
}
int main()
{
int n=read(),i,j,ans=;
for(i=;i<=n;++i)p[i].x=read(),p[i].y=read(),p[i].id=i;
sort(p,p+n+,cmp1);
for(i=;i<n;++i)if(p[i].x+p[i].y==p[i+].x+p[i+].y)t1[p[i].id]=p[i+].id;
sort(p,p+n+,cmp2);
for(i=;i<n;++i)if(p[i].x-p[i].y==p[i+].x-p[i+].y)t2[p[i].id]=p[i+].id;
sort(p,p+n+,cmp3);
for(i=;i<n;++i)if(p[i].x==p[i+].x)t3[p[i].id]=p[i+].id;
sort(p,p+n+,cmp4);
for(i=;i<=n;++i)s[p[i].id]=i;
memset(f,,sizeof(f));f[s[]]=;
for(i=;i<=n;i=r[i]+)
{
for(l[i]=r[i]=i;r[i]<n&&p[r[i]+].y==p[r[i]].y;++r[i]);
for(j=l[i];++j<=r[i];)l[j]=l[i],r[j]=r[i];
for(lf[l[i]]=-INF,j=l[i];++j<=r[i];)lf[j]=max(lf[j-],f[j-]);
for(rf[r[i]]=-INF,j=r[i];--j>=l[i];)rf[j]=max(rf[j+],f[j+]);
for(j=l[i];j<=r[i];++j)
{
ff[j]=max(f[j],max(lf[j]+j-l[i],rf[j]+r[i]-j));
if(t1[p[j].id])upd(s[t1[p[j].id]],j);
if(t2[p[j].id])upd(s[t2[p[j].id]],j);
if(t3[p[j].id])upd(s[t3[p[j].id]],j);
if(ff[j]>ans)ans=ff[j],v.clear();
if(ff[j]==ans)v.push_back(j);
}
}
printf("%d\n",ans);
get_ans(v[]);
for(i=an;--i;)printf("%d ",p[a[i]].id);puts("");
for(i=;i<v.size();++i)dfs(v[i]);
for(i=;i<=n;++i)
{
if(c[i]<)maxFlow::ins(S,i,-c[i]);else maxFlow::ins(i,T,c[i]);
maxFlow::ins(MN+,i,INF);maxFlow::ins(i,MN+,INF);
}
maxFlow::dinic();
maxFlow::ins(MN+,MN+,INF);
printf("%d",maxFlow::dinic());
}

[BZOJ]4200: [Noi2015]小园丁与老司机的更多相关文章

  1. bzoj 4200: [Noi2015]小园丁与老司机【dp+有上下界最小流】

    洛谷上有个点死活卡不过去,不知道是哪里写丑了orz 参考:https://www.cnblogs.com/ditoly/p/BZOJ4200.html 从上往下dp,设f为不向左右走直接上去的值,g为 ...

  2. [BZOJ4200][Noi2015]小园丁与老司机

    4200: [Noi2015]小园丁与老司机 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 106  Solved ...

  3. [UOJ#132][BZOJ4200][luogu_P2304][NOI2015]小园丁与老司机

    [UOJ#132][BZOJ4200][luogu_P2304][NOI2015]小园丁与老司机 试题描述 小园丁 Mr. S 负责看管一片田野,田野可以看作一个二维平面.田野上有 \(n\) 棵许愿 ...

  4. 【BZOJ4200】[Noi2015]小园丁与老司机 DP+最小流

    [BZOJ2839][Noi2015]小园丁与老司机 Description 小园丁 Mr. S 负责看管一片田野,田野可以看作一个二维平面.田野上有 nn 棵许愿树,编号 1,2,3,…,n1,2, ...

  5. luogu P2304 [NOI2015]小园丁与老司机 dp 上下界网络流

    LINK:小园丁与老司机 苦心人 天不负 卧薪尝胆 三千越甲可吞吴 AC的刹那 真的是泪目啊 很久以前就写了 当时记得特别清楚 写到肚子疼.. 调到胳膊疼.. ex到根不不想看的程度. 当时wa了 一 ...

  6. BZOJ4200 & 洛谷2304 & UOJ132:[NOI2015]小园丁与老司机——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4200 https://www.luogu.org/problemnew/show/P2304 ht ...

  7. [Noi2015]小园丁和老司机

    来自FallDream的博客,未经允许,请勿转载,谢谢. 小园丁 Mr. S 负责看管一片田野,田野可以看作一个二维平面.田野上有n棵许愿树,编号1,2,3,…,n,每棵树可以看作平面上的一个点,其中 ...

  8. uoj132/BZOJ4200/洛谷P2304 [Noi2015]小园丁与老司机 【dp + 带上下界网络流】

    题目链接 uoj132 题解 真是一道大码题,,,肝了一个上午 老司机的部分是一个\(dp\),观察点是按\(y\)分层的,而且按每层点的上限来看可以使用\(O(nd)\)的\(dp\),其中\(d\ ...

  9. 【bzoj4200】[Noi2015]小园丁与老司机 STL-map+dp+有上下界最小流

    题目描述 小园丁 Mr. S 负责看管一片田野,田野可以看作一个二维平面.田野上有 nn 棵许愿树,编号 1,2,3,…,n1,2,3,…,n,每棵树可以看作平面上的一个点,其中第 ii 棵树 (1≤ ...

随机推荐

  1. Week1绪论--抽象数据类型

    一.作业题目 1.构造有理数T,元素e1,e2分别被赋以分子.分母值 2.销毁有理数T 3.用e(引用类型参数)返回有理数T的分子或分母,当入参i为1时返回分子, i为2是返回分母. 4.将有理数T的 ...

  2. 转git取消commit

     如果不小心commit了一个不需要commit的文件,可以对其进行撤销. 先使用git log 查看 commit日志 commit 422bc088a7d6c5429f1d0760d008d8 ...

  3. C语言——第二次作业

    **学习内容总结** 本周是国庆假期,学习了mooc相关课程.阅读了<提问的智慧>一文. 文章总结 1.在提问之前,要利用身边的资源(例如相关资料.FAQ.浏览器搜索)试着自己寻找答案,或 ...

  4. 第四十三条:返回零长度的数组或者集合,而不是null

    如果一个方法的返回值类型是集合或者数组 ,如果在方法内部需要返回的集合或者数组是零长度的,也就是没有实际对象在里面, 我们也应该放回一个零长度的数组或者集合,而不是返回null.如果返回了null,客 ...

  5. gdb-peda调试总汇

    gdb-peda调试总汇 break *0x400100 (b main):在 0x400100 处下断点 tb一次性断点 info b:查看断点信息 delete [number]:删除断点 wat ...

  6. vue-cli webpack3扩展多模块打包

    场景 在实际的项目开发中会出现这样的场景,项目中需要多个模块(单页或者多页应用)配合使用的情况,而vue-cli默认只提供了单入口打包,所以就想到对vue-cli进行扩展 实现 首先得知道webpac ...

  7. Angular 学习笔记 ( PWA + App Shell )

    PWA (Progressive Web Apps) 是未来网页设计的方向. 渐进式网站. Angular v5 开始支持 pwa 网站 (所谓支持意思是说有一些 build in 的方法和规范去实现 ...

  8. GIT入门笔记(8)-- 查看历史提交记录/根据版本号回到过去或未来

    在Git中,用HEAD表示当前版本,也就是最新的提交版本, 上一个版本就是HEAD^, 上上一个版本就是HEAD^^, 往上100个版本写100个^比较容易数不过来,所以写成HEAD~100. Git ...

  9. Bootstrap 栅格系统简单整理

    Bootstrap内置了一套响应式.移动设备优先的流式栅格系统,随着屏幕设备或视口(viewport)尺寸的增加,系统会自动分为最多12列. 总结一下我近期的学习Bootstrap的一些理解: 一.. ...

  10. mysql(1)—— 详解一条sql语句的执行过程

    SQL是一套标准,全称结构化查询语言,是用来完成和数据库之间的通信的编程语言,SQL语言是脚本语言,直接运行在数据库上.同时,SQL语句与数据在数据库上的存储方式无关,只是不同的数据库对于同一条SQL ...