题意:已知C(m,n) = m!/(n!(m-n)!),已知p,q,r,s,求C(p,q)/C(r,s)

思路:

全部分解成质因子,相乘则加,除则减

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <map>
#include <vector>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int N =10001;
vector<int>prime;
int pri[N];
int num[N];
void getprime()
{
memset(pri,1,sizeof(pri));
for(int i = 2; i <= N; i++)
{
if(pri[i])
{
prime.push_back(i);
for(int j = i+i; j <= N; j+=i)
pri[j] = 0;
}
}
} void add_factorial(int n,int d) //
{
for(int i = 1;i <= n;i++)
{
int tt = i;
for(int j = 0;j < prime.size();j++)
{
while(tt % prime[j] == 0)
{
num[j]+=d;
tt /= prime[j];
}
if(tt == 1)
break;
}
}
} int main()
{
int p,q,r,s;
getprime();
while(scanf("%d%d%d%d",&p,&q,&r,&s) != EOF)
{
memset(num,0,sizeof(num));
add_factorial(p,1);
add_factorial(q,-1);
add_factorial(p-q,-1);
add_factorial(r,-1);
add_factorial(s,1);
add_factorial(r-s,1);
double ans = 1.0;
for(int i = 0;i < prime.size();i++)
{
ans *= pow(prime[i],num[i]);
}
printf("%.5lf\n",ans);
}
return 0;
}

  

例10-3 uva10375(唯一分解定理)的更多相关文章

  1. 例10-6 uva1635(唯一分解定理)

    题意:给定n个数a1,a2····an,依次求出相邻两个数值和,将得到一个新数列,重复上述操作,最后结果将变为一个数,问这个数除以m的余数与那些数无关? 思路:最后观察期规律符合杨辉三角,那么,问题就 ...

  2. UVA-10375 唯一分解定理

    #include<iostream> #include<string.h> #include<algorithm> #include<math.h> # ...

  3. LightOJ-1236 Pairs Forming LCM 唯一分解定理

    题目链接:https://cn.vjudge.net/problem/LightOJ-1236 题意 给一整数n,求有多少对a和b(a<=b),使lcm(a, b)=n 注意数据范围n<= ...

  4. uva10375 Choose and Divide(唯一分解定理)

    uva10375 Choose and Divide(唯一分解定理) 题意: 已知C(m,n)=m! / (n!*(m-n!)),输入整数p,q,r,s(p>=q,r>=s,p,q,r,s ...

  5. UVa10375:选择与除法(唯一分解定理)

    The binomial coefficient C(m,n) is defined as Given four natural numbers p, q, r, and s, compute the th ...

  6. 唯一分解定理(以Minimun Sum LCM UVa 10791为例)

    唯一分解定理是指任何正整数都可以分解为一些素数的幂之积,即任意正整数n=a1^p1*a2^p2*...*ai^pi:其中ai为任意素数,pi为任意整数. 题意是输入整数n,求至少2个整数,使得它们的最 ...

  7. LightOJ 1341 - Aladdin and the Flying Carpet (唯一分解定理 + 素数筛选)

    http://lightoj.com/volume_showproblem.php?problem=1341 Aladdin and the Flying Carpet Time Limit:3000 ...

  8. Choose and divide(唯一分解定理)

    首先说一下什么是唯一分解定理 唯一分解定理:任何一个大于1的自然数N,如果N不是质数,那么N可以分解成有限个素数的乘积:例:N=(p1^a1)*(p2^a2)*(p3^a3)......其中p1< ...

  9. FZU 1075 分解素因子【数论/唯一分解定理/分解素因子裸模板】

    [唯一分解定理]:https://www.cnblogs.com/mjtcn/p/6743624.html 假设x是一个正整数,它的值不超过65535(即1<x<=65535),请编写一个 ...

  10. POJ 1845-Sumdiv(快速幂取模+整数唯一分解定理+约数和公式+同余模公式)

    Sumdiv Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u Submit Statu ...

随机推荐

  1. exports

    暴露函数 var bar = require("./bar.js"); var msg = "你好"; var info = "呵呵"; f ...

  2. redux的知识点

    Redux: Redux 是针对 JavaScript应用的可预测状态容器 就是用来管理数据的.stroe 保存数据action领导 下达命令reducer员工 执行命令 下载命令:  npm ins ...

  3. NFC驱动调试

    1.NFC基本概念: NFC 又称为近场通信,是一种新兴技术,可以在彼此靠近的情况下进行数据交换,是由非接触式射频识别(RFID) 及互连互通技术整合演变而来,通过单一芯片集成感应式读卡器: NFC有 ...

  4. URL编码和Base64编码 (转)

    我们经常会遇到所谓的URL编码(也叫百分号编码)和Base64编码.      先说一下Bsae64编码.BASE64编码是一种常用的将二进制数据转换为64个可打印字符的编码,常用于在通常处理文本数据 ...

  5. SpringCloud的Config:ConfigServer注册到EurekaServer中,变成一个Eureka服务

    一.概念与定义 1.将SpringCloud ConfigServer注册到 EurekaServer,以便ConfigClient以服务的方式引用ConfigServer 2.客户端不再引用 Con ...

  6. 新概念英语(1-43)Hurry up!

    新概念英语(1-43)Hurry up! How do you know Sam doesn't make the tea very often? A:Can you make the tea, Sa ...

  7. Spring Security 入门(1-3-2)Spring Security - http元素 - intercept-url配置

    http元素下可以配置登录页面,也可以配置 url 拦截. 1.直接配置拦截url和对应的访问权限 <security:http use-expressions="false" ...

  8. Hibernate(四):Hello World

    下载hibernate开发包: 在本章之前需要继承hibernate开发插件到eclipse,详细操作请参考我的博文:<Hibernate(一):安装hibernate插件到eclipse环境& ...

  9. ZOJ-2750 Idiomatic Phrases Game---Dijk最短路

    题目链接: https://vjudge.net/problem/ZOJ-2750 题目大意: 给定一本字典,字典里有很多成语,要求从字典里的第一个成语开始,运用字典里的成语变到最后一个成语,变得过程 ...

  10. 微信 登录 Scope 参数错误或没有 Scope 权限

    //电脑端 扫码授权登录 public static string AuthUrl = "https://open.weixin.qq.com/connect/qrconnect?appid ...