题意:已知C(m,n) = m!/(n!(m-n)!),已知p,q,r,s,求C(p,q)/C(r,s)

思路:

全部分解成质因子,相乘则加,除则减

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <map>
#include <vector>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int N =10001;
vector<int>prime;
int pri[N];
int num[N];
void getprime()
{
memset(pri,1,sizeof(pri));
for(int i = 2; i <= N; i++)
{
if(pri[i])
{
prime.push_back(i);
for(int j = i+i; j <= N; j+=i)
pri[j] = 0;
}
}
} void add_factorial(int n,int d) //
{
for(int i = 1;i <= n;i++)
{
int tt = i;
for(int j = 0;j < prime.size();j++)
{
while(tt % prime[j] == 0)
{
num[j]+=d;
tt /= prime[j];
}
if(tt == 1)
break;
}
}
} int main()
{
int p,q,r,s;
getprime();
while(scanf("%d%d%d%d",&p,&q,&r,&s) != EOF)
{
memset(num,0,sizeof(num));
add_factorial(p,1);
add_factorial(q,-1);
add_factorial(p-q,-1);
add_factorial(r,-1);
add_factorial(s,1);
add_factorial(r-s,1);
double ans = 1.0;
for(int i = 0;i < prime.size();i++)
{
ans *= pow(prime[i],num[i]);
}
printf("%.5lf\n",ans);
}
return 0;
}

  

例10-3 uva10375(唯一分解定理)的更多相关文章

  1. 例10-6 uva1635(唯一分解定理)

    题意:给定n个数a1,a2····an,依次求出相邻两个数值和,将得到一个新数列,重复上述操作,最后结果将变为一个数,问这个数除以m的余数与那些数无关? 思路:最后观察期规律符合杨辉三角,那么,问题就 ...

  2. UVA-10375 唯一分解定理

    #include<iostream> #include<string.h> #include<algorithm> #include<math.h> # ...

  3. LightOJ-1236 Pairs Forming LCM 唯一分解定理

    题目链接:https://cn.vjudge.net/problem/LightOJ-1236 题意 给一整数n,求有多少对a和b(a<=b),使lcm(a, b)=n 注意数据范围n<= ...

  4. uva10375 Choose and Divide(唯一分解定理)

    uva10375 Choose and Divide(唯一分解定理) 题意: 已知C(m,n)=m! / (n!*(m-n!)),输入整数p,q,r,s(p>=q,r>=s,p,q,r,s ...

  5. UVa10375:选择与除法(唯一分解定理)

    The binomial coefficient C(m,n) is defined as Given four natural numbers p, q, r, and s, compute the th ...

  6. 唯一分解定理(以Minimun Sum LCM UVa 10791为例)

    唯一分解定理是指任何正整数都可以分解为一些素数的幂之积,即任意正整数n=a1^p1*a2^p2*...*ai^pi:其中ai为任意素数,pi为任意整数. 题意是输入整数n,求至少2个整数,使得它们的最 ...

  7. LightOJ 1341 - Aladdin and the Flying Carpet (唯一分解定理 + 素数筛选)

    http://lightoj.com/volume_showproblem.php?problem=1341 Aladdin and the Flying Carpet Time Limit:3000 ...

  8. Choose and divide(唯一分解定理)

    首先说一下什么是唯一分解定理 唯一分解定理:任何一个大于1的自然数N,如果N不是质数,那么N可以分解成有限个素数的乘积:例:N=(p1^a1)*(p2^a2)*(p3^a3)......其中p1< ...

  9. FZU 1075 分解素因子【数论/唯一分解定理/分解素因子裸模板】

    [唯一分解定理]:https://www.cnblogs.com/mjtcn/p/6743624.html 假设x是一个正整数,它的值不超过65535(即1<x<=65535),请编写一个 ...

  10. POJ 1845-Sumdiv(快速幂取模+整数唯一分解定理+约数和公式+同余模公式)

    Sumdiv Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u Submit Statu ...

随机推荐

  1. 小草手把手教你 LabVIEW 串口仪器控制——初识VISA串口

    有些人,学习一样东西时候,喜欢现成的例子.很多人学习一门技术,都喜欢现成的例子开始,比如学单片机的啊,最开始都是修改的例子吧,学语言的也是.最开始都是模仿.这个年头看书上的理论知识太浪费时间了.所以啊 ...

  2. CSS揭秘(三)形状

    Chapter 3 1. 椭圆 椭圆的实现主要依靠 border-radius 属性,该属性确定边框切圆角的半径大小,可以指定数值 px,也可以使用百分比显示 而且该属性非常灵活,四个角可以分别设置 ...

  3. Spring知识点回顾(01)Java Config

    Spring知识点回顾(01) 一.Java Config 1.服务和服务注入 2.Java 注解 :功能更强一些 3.测试验证 二.注解注入 1.服务和服务注入 2.配置加载 3.测试验证 三.总结 ...

  4. mysql(1)—— 详解一条sql语句的执行过程

    SQL是一套标准,全称结构化查询语言,是用来完成和数据库之间的通信的编程语言,SQL语言是脚本语言,直接运行在数据库上.同时,SQL语句与数据在数据库上的存储方式无关,只是不同的数据库对于同一条SQL ...

  5. Window7系统下安装jdk

    根据电脑的操作系统下载相对于的jdk版本(32位或64位),我安装的是:java_jdk1.7 [计算机]——[属性]——[高级系统设置]——高级——[环境变量] 系统变量——>新建JAVA_H ...

  6. word2vec初探(用python简单实现)

    为什么要用这个? 因为看论文和博客的时候很常见,不论是干嘛的,既然这么火,不妨试试. 如何安装 从网上爬数据下来 对数据进行过滤.分词 用word2vec进行近义词查找等操作 完整的工程传到了我的gi ...

  7. Tomcat NIO

    说起Tomcat的NIO,不得不提的就是Connector这个Tomcat组件.Connector是Tomcat的连接器,其主要任务是负责处理收到的请求,并创建一个Request和Response的对 ...

  8. 浅谈 DML、DDL、DCL的区别

    一.DML DML(data manipulation language)数据操纵语言: 就是我们最经常用到的 SELECT.UPDATE.INSERT.DELETE. 主要用来对数据库的数据进行一些 ...

  9. JavaScript 克隆

    JavaScript 克隆 本次学习内容: 克隆:只克隆标签和属性,不克隆文本. 克隆的功能,如果不添加使用Ture,就只会克隆标签和属性,不会克隆文本. 克隆的参数全部是节点对象,不能是字符串 &l ...

  10. SpringMVC(八):使用Servlet原生API作为Spring MVC hanlder方法的参数

    在SpringMVC开发中,是有场景需要在Handler方法中直接使用ServletAPI. 在Spring MVC Handler的方法中都支持哪些Servlet API作为参数呢? --Respo ...