对于互质的两个数p,q,px+py 不能表示的最大数为pq-p-q.

证明:

先证:pq-p-q不能被px+py表示.

假设pq-p-q可以被px+py表示

那么 px+py=pq-p-q

     p(x+1)+q(y+1)=pq

  -> q|x+1  p|y+1

    很明显x+1>=q

    p(x+1)>=pq 矛盾

所以pq-p-q不能被px+py表示.

再证:大于pq-p-q的数一定可以用px+qy表示(x>=0 y>=0)

(p-1)(q-1)=pq-p-q+1

对于n>pq-q-p即n>=(q-1)(p-1)

gcd(p,q)=1

对于z<min{p,q}存在a,b使得ap+bq=z

不妨设a>0>b,显然a>0

那么如果a>q,取a1=a-q,b1=b+p

那么有a1*p+b1*q=z.

如果a1>q,可以继续以得到

Ap+Bq=z,且0<|A|<q,0<|B|<p

pq-p-q=(p-1)q-q=(q-1)p-p

对于n>pq-q-p

n=pq-q-p+k*min{p,q}+r

r<z<min{p,q}

那么取A,B

Ap+Bq=r,且0<|A|<q,0<|B|<p

不妨设A>0

n=pq-q-p+k*min{p,q}+r

=(q-1)p-p+k*min{p,q}+Ap+Bq

=(A-1)p+(B+q-1)p+k*min{p,q}

其中(A-1),(B+q-1)>=0

那么无论min{p,q}是p还是q,都有

对于n>pq-q-p,都可以表示成px+qy

      

数论:px+py 不能表示的最大数为pq-p-q的证明的更多相关文章

  1. <数论相关>欧几里得与拓展欧几里得证明及应用

    欧几里得算法 欧几里得算法的复杂度为O(log(n)),是一个非常高效的求最大公约数算法. 在这里不证明欧几里得算法的复杂度,有兴趣的可以访问以下链接:http://blog.sina.com.cn/ ...

  2. 洛谷P2737 [USACO4.1]麦香牛块Beef McNuggets

    P2737 [USACO4.1]麦香牛块Beef McNuggets 13通过 21提交 题目提供者该用户不存在 标签USACO 难度普及+/提高 提交  讨论  题解 最新讨论 暂时没有讨论 题目描 ...

  3. HDU - 1175 bfs

    思路:d[x][y][z]表示以z方向走到(x, y)的转弯次数. 如果用优先队列会超时,因为加入队列的节点太多,无用的节点不能及时出队,会造成MLE,用单调队列即可. AC代码 #include & ...

  4. UVA1600 状态BFS

    刚开是我用了一种很笨的bfs过掉的,后来看到原来还可以三维带状态BFS,觉得是一个不错的思路. d[x][y][k]表示坐标位于(x,y)经过K个障碍到达时的最短路径,当然如果(x,y)处的数字是0就 ...

  5. BFS算法入门--POJ3984

    迷宫问题–POJ3984 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 22008 Accepted: 12848 Descri ...

  6. [USACO4.1]麦香牛块Beef McNuggets By cellur925

    题目描述 农夫布朗的奶牛们正在进行斗争,因为它们听说麦当劳正在考虑引进一种新产品:麦香牛块.奶牛们正在想尽一切办法让这种可怕的设想泡汤.奶牛们进行斗争的策略之一是“劣质的包装”.“看,”奶牛们说,“如 ...

  7. NOIP 考前研究

    NOIP 2017 试题研究 D1T1 小凯的疑惑 (45 min) 看到题面,大概是推数学公式. 先打暴力表,观察 \(a,b\) 与 \(n\) 的关系.猜想 \(a×b−a−b\). 引理:对于 ...

  8. 瓦片切图工具gdal2tiles.py改写为纯c++版本

    gdal2tiles.py是GDAL库中用于生成TMS瓦片的python代码,支持谷歌墨卡托EPSG:3857与经纬度EPSG:4326两种瓦片,输出png格式图像. gdal2tiles.py Mo ...

  9. 瓦片切图工具gdal2tiles.py改写为纯c++版本(二)

    python这么火,C++/C#的程序员都生存不下去了,为啥还要干把python转写成c++的这种反动的事? 项目需要呗... gdal2tiles.py文件中有两个类是计算全球墨卡托与WGS84两种 ...

随机推荐

  1. TCP/IP协议复习

  2. 201421123042 《Java程序设计》第7周学习总结

    1. 本周学习总结 1.1 思维导图:Java图形界面总结 2.书面作业 1. GUI中的事件处理 1.1 写出事件处理模型中最重要的几个关键词. 事件源 事件对象 事件监听器 事件适合配器 1.2 ...

  3. nyoj 移位密码

    移位密码 时间限制:1000 ms  |  内存限制:65535 KB 难度:0   描述 移位密码是最简单的一类代替密码,具体算法就是将字母表的字母右移k个位置(k<26),并对字母表长度作模 ...

  4. 开发者的如何优雅的使用OSX

    Mac对于IT开发者来说是最好的开发工具,没有之一. 但是对于大部分人来说,第一个接触的PC操作系统都是Windows系统,此文将带大家优雅的快速学习和使用Mac的OSX系统. 1. 从键盘说起 Ma ...

  5. EasyUi中对话框。

    html页面代码: <head id="Head1" runat="server"> <meta http-equiv="Conte ...

  6. python time、datetime、random、os、sys模块

    一.模块1.定义模块:用来从逻辑上组织Python代码(变量,函数,类,逻辑:实现一个功能),本质就是.py结尾的python文件(文件名:test.py,对应的模块名:test)包:用来从逻辑上组织 ...

  7. “认证发布”和“获取展示”,如何在 SharePoint 中正确使用 RSS Feed。

    在我们进行的日常工作中,是由一部分信息需要 Share 给其他人或者组织的.SharePoint 虽然支持在某个 Site Collection 中互通信息,但是跨 Site Collection 的 ...

  8. leetcode算法: Keyboard Row

    Given a List of words, return the words that can be typed using letters of alphabet on only one row' ...

  9. Python基础数据类型之字典

      基础数据类型之字典 ps:数据类型划分:可变数据类型和不可变数据类型. 不可变数据类型:元组(tupe).布尔值(bool).整数型(int).字符串(str).不可变数据类型也称为可哈希. 可变 ...

  10. IDEA里面创建maven项目,依赖

    在IDEA里面创建一个简单的Maven项目: 在file-->new-->project ,选择maven,点击next 里面的一些简单参数的定义(第一次使用的话可以使用默认的值进行后面的 ...