数论:px+py 不能表示的最大数为pq-p-q的证明
对于互质的两个数p,q,px+py 不能表示的最大数为pq-p-q.
证明:
先证:pq-p-q不能被px+py表示.
假设pq-p-q可以被px+py表示
那么 px+py=pq-p-q
p(x+1)+q(y+1)=pq
-> q|x+1 p|y+1
很明显x+1>=q
p(x+1)>=pq 矛盾
所以pq-p-q不能被px+py表示.
再证:大于pq-p-q的数一定可以用px+qy表示(x>=0 y>=0)
(p-1)(q-1)=pq-p-q+1
对于n>pq-q-p即n>=(q-1)(p-1)
gcd(p,q)=1
对于z<min{p,q}存在a,b使得ap+bq=z
不妨设a>0>b,显然a>0
那么如果a>q,取a1=a-q,b1=b+p
那么有a1*p+b1*q=z.
如果a1>q,可以继续以得到
Ap+Bq=z,且0<|A|<q,0<|B|<p
pq-p-q=(p-1)q-q=(q-1)p-p
对于n>pq-q-p
n=pq-q-p+k*min{p,q}+r
r<z<min{p,q}
那么取A,B
Ap+Bq=r,且0<|A|<q,0<|B|<p
不妨设A>0
n=pq-q-p+k*min{p,q}+r
=(q-1)p-p+k*min{p,q}+Ap+Bq
=(A-1)p+(B+q-1)p+k*min{p,q}
其中(A-1),(B+q-1)>=0
那么无论min{p,q}是p还是q,都有
对于n>pq-q-p,都可以表示成px+qy
数论:px+py 不能表示的最大数为pq-p-q的证明的更多相关文章
- <数论相关>欧几里得与拓展欧几里得证明及应用
欧几里得算法 欧几里得算法的复杂度为O(log(n)),是一个非常高效的求最大公约数算法. 在这里不证明欧几里得算法的复杂度,有兴趣的可以访问以下链接:http://blog.sina.com.cn/ ...
- 洛谷P2737 [USACO4.1]麦香牛块Beef McNuggets
P2737 [USACO4.1]麦香牛块Beef McNuggets 13通过 21提交 题目提供者该用户不存在 标签USACO 难度普及+/提高 提交 讨论 题解 最新讨论 暂时没有讨论 题目描 ...
- HDU - 1175 bfs
思路:d[x][y][z]表示以z方向走到(x, y)的转弯次数. 如果用优先队列会超时,因为加入队列的节点太多,无用的节点不能及时出队,会造成MLE,用单调队列即可. AC代码 #include & ...
- UVA1600 状态BFS
刚开是我用了一种很笨的bfs过掉的,后来看到原来还可以三维带状态BFS,觉得是一个不错的思路. d[x][y][k]表示坐标位于(x,y)经过K个障碍到达时的最短路径,当然如果(x,y)处的数字是0就 ...
- BFS算法入门--POJ3984
迷宫问题–POJ3984 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 22008 Accepted: 12848 Descri ...
- [USACO4.1]麦香牛块Beef McNuggets By cellur925
题目描述 农夫布朗的奶牛们正在进行斗争,因为它们听说麦当劳正在考虑引进一种新产品:麦香牛块.奶牛们正在想尽一切办法让这种可怕的设想泡汤.奶牛们进行斗争的策略之一是“劣质的包装”.“看,”奶牛们说,“如 ...
- NOIP 考前研究
NOIP 2017 试题研究 D1T1 小凯的疑惑 (45 min) 看到题面,大概是推数学公式. 先打暴力表,观察 \(a,b\) 与 \(n\) 的关系.猜想 \(a×b−a−b\). 引理:对于 ...
- 瓦片切图工具gdal2tiles.py改写为纯c++版本
gdal2tiles.py是GDAL库中用于生成TMS瓦片的python代码,支持谷歌墨卡托EPSG:3857与经纬度EPSG:4326两种瓦片,输出png格式图像. gdal2tiles.py Mo ...
- 瓦片切图工具gdal2tiles.py改写为纯c++版本(二)
python这么火,C++/C#的程序员都生存不下去了,为啥还要干把python转写成c++的这种反动的事? 项目需要呗... gdal2tiles.py文件中有两个类是计算全球墨卡托与WGS84两种 ...
随机推荐
- 20145237 《Java程序设计》第10周学习总结
20145237 <Java程序设计>第10周学习总结 教材学习内容总结 Java的网络编程 •网络编程是指编写运行在多个设备(计算机)的程序,这些设备都通过网络连接起来. •java.n ...
- IE bug:ajax请求返回304解决方案
bug说明: 同一账户下的默认收货地址只有一个,默认收货地址可以修改,修改完成后,使用ajax重新加载收货地址部分. 默认收货地址状态标记:status = 1: 在IE浏览器做了修改后,重新加载的数 ...
- 06_Python的数据类型3元组,集合和字典_Python编程之路
上一节跟大家讲了Python的列表,当然不是完整的讲完,后续我们还会提到,这一节我们还是来讲Python的数据类型 首先要讲到的就是元组 元组其实拥有列表的一些特性,可以存储不同类型的值,但在某些方面 ...
- php的控制器链
控制器之间协同工作就形成了控制器链· 比如在一个控制器的方法中,创建另外一个·控制器,创建对象,然后调用第二个控制器方法,那么在第一个控制器分配给视图的变量,在 第二个控制器的方法中对应的视图也是可以 ...
- Aache的虚拟主机配置虚拟目录
3. 打开 httpd.conf 文件, 添加如下代码: # Virtual hosts Include conf/extra/httpd-vhosts.conf 如果已存在,将Include前面的# ...
- 记一次向maven中央仓库提交依赖包
Maven是Java中最常用的依赖管理工具,Maven的中央仓库保罗万象,涵盖了各个领域的框架.工具和文档,也是Java生态强大生命力的体现.我们自己开发的一些有用有趣的代码也可以通过打包上传到mav ...
- 读论文系列:Object Detection ECCV2016 SSD
转载请注明作者:梦里茶 Single Shot MultiBox Detector Introduction 一句话概括:SSD就是关于类别的多尺度RPN网络 基本思路: 基础网络后接多层featur ...
- JavaScript 动态显示当前时间
代码如下: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <tit ...
- 第二章 JavaScript核心语法
第二章 avaScript核心语法 一.变量的声明和赋值 JavaScript是一种弱类型语言,没有明确的数据类型,也就是在声明变量时不需要指定数据类型,变量的类型由赋给变量的值决定. 在Java ...
- Linux进程管理:后台启动进程和任务管理命令
一.为什么要使程序在后台执行 我们的应用有时候要运行时间很长,如:几个小时甚至几个星期,我们可以让程序在后台一直跑. 让程序在后台运行的好处有: 终端关机不影响后台进程的运行.(不会终端一关机或者网络 ...