数论:px+py 不能表示的最大数为pq-p-q的证明
对于互质的两个数p,q,px+py 不能表示的最大数为pq-p-q.
证明:
先证:pq-p-q不能被px+py表示.
假设pq-p-q可以被px+py表示
那么 px+py=pq-p-q
p(x+1)+q(y+1)=pq
-> q|x+1 p|y+1
很明显x+1>=q
p(x+1)>=pq 矛盾
所以pq-p-q不能被px+py表示.
再证:大于pq-p-q的数一定可以用px+qy表示(x>=0 y>=0)
(p-1)(q-1)=pq-p-q+1
对于n>pq-q-p即n>=(q-1)(p-1)
gcd(p,q)=1
对于z<min{p,q}存在a,b使得ap+bq=z
不妨设a>0>b,显然a>0
那么如果a>q,取a1=a-q,b1=b+p
那么有a1*p+b1*q=z.
如果a1>q,可以继续以得到
Ap+Bq=z,且0<|A|<q,0<|B|<p
pq-p-q=(p-1)q-q=(q-1)p-p
对于n>pq-q-p
n=pq-q-p+k*min{p,q}+r
r<z<min{p,q}
那么取A,B
Ap+Bq=r,且0<|A|<q,0<|B|<p
不妨设A>0
n=pq-q-p+k*min{p,q}+r
=(q-1)p-p+k*min{p,q}+Ap+Bq
=(A-1)p+(B+q-1)p+k*min{p,q}
其中(A-1),(B+q-1)>=0
那么无论min{p,q}是p还是q,都有
对于n>pq-q-p,都可以表示成px+qy
数论:px+py 不能表示的最大数为pq-p-q的证明的更多相关文章
- <数论相关>欧几里得与拓展欧几里得证明及应用
欧几里得算法 欧几里得算法的复杂度为O(log(n)),是一个非常高效的求最大公约数算法. 在这里不证明欧几里得算法的复杂度,有兴趣的可以访问以下链接:http://blog.sina.com.cn/ ...
- 洛谷P2737 [USACO4.1]麦香牛块Beef McNuggets
P2737 [USACO4.1]麦香牛块Beef McNuggets 13通过 21提交 题目提供者该用户不存在 标签USACO 难度普及+/提高 提交 讨论 题解 最新讨论 暂时没有讨论 题目描 ...
- HDU - 1175 bfs
思路:d[x][y][z]表示以z方向走到(x, y)的转弯次数. 如果用优先队列会超时,因为加入队列的节点太多,无用的节点不能及时出队,会造成MLE,用单调队列即可. AC代码 #include & ...
- UVA1600 状态BFS
刚开是我用了一种很笨的bfs过掉的,后来看到原来还可以三维带状态BFS,觉得是一个不错的思路. d[x][y][k]表示坐标位于(x,y)经过K个障碍到达时的最短路径,当然如果(x,y)处的数字是0就 ...
- BFS算法入门--POJ3984
迷宫问题–POJ3984 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 22008 Accepted: 12848 Descri ...
- [USACO4.1]麦香牛块Beef McNuggets By cellur925
题目描述 农夫布朗的奶牛们正在进行斗争,因为它们听说麦当劳正在考虑引进一种新产品:麦香牛块.奶牛们正在想尽一切办法让这种可怕的设想泡汤.奶牛们进行斗争的策略之一是“劣质的包装”.“看,”奶牛们说,“如 ...
- NOIP 考前研究
NOIP 2017 试题研究 D1T1 小凯的疑惑 (45 min) 看到题面,大概是推数学公式. 先打暴力表,观察 \(a,b\) 与 \(n\) 的关系.猜想 \(a×b−a−b\). 引理:对于 ...
- 瓦片切图工具gdal2tiles.py改写为纯c++版本
gdal2tiles.py是GDAL库中用于生成TMS瓦片的python代码,支持谷歌墨卡托EPSG:3857与经纬度EPSG:4326两种瓦片,输出png格式图像. gdal2tiles.py Mo ...
- 瓦片切图工具gdal2tiles.py改写为纯c++版本(二)
python这么火,C++/C#的程序员都生存不下去了,为啥还要干把python转写成c++的这种反动的事? 项目需要呗... gdal2tiles.py文件中有两个类是计算全球墨卡托与WGS84两种 ...
随机推荐
- segmentedControl设置字体和字体颜色问题
NSDictionary *dic = [NSDictionary dictionaryWithObjectsAndKeys:[UIColor blackColor],UITextAttributeT ...
- SOAP不同版本引起的问题
曾经遇到这样一个问题,在组织soap字符串时报这个错误: 2013-5-29 17:25:56 org.apache.cxf.phase.PhaseInterceptorChain doDefaul ...
- nyoj 正数性质
整数性质 时间限制:500 ms | 内存限制:65535 KB 难度:1 描述 我们知道,在数学中,对于任意两个正整数a和b,必定存在一对整数s.t使得sa+tb=gcd(a,b). 输 ...
- JAVA_SE基础——33.this关键字的练习
需求:使用java定义的一个人类,人具备 id ,name ,age 三个属性,还具备一个比较年龄的方法. 要求:必须要写上构造函数,构造函数也必须要使用上this关键字. class Person{ ...
- 构建自己的 PHP 框架
这是一个系列的文章,项目地址在这里,欢迎大家star. 这个框架前一部分比较像Yii,后一部分比较像Laravel,因为当时正在看相应框架的源码,所以会有不少借鉴参考.捂脸- 这个框架千万不要直接应用 ...
- windows安装gcc编译器
由于vc6.0对c语言编译不是很好,有些语句是正确的,但是编译却不能通过 所以决定在windows中安装gcc编译器来使用! http://www.cnblogs.com/cryinstall/arc ...
- Python扩展模块——selenium的使用(定位、下载文件等)
想全面的使用selenium可以下载<selenium 2自动化测试实战-基于Python语言>PDF的电子书看看 我使用到了简单的浏览器操作,下载文件等功能... 推荐使用firefox ...
- “认证发布”和“获取展示”,如何在 SharePoint 中正确使用 RSS Feed。
在我们进行的日常工作中,是由一部分信息需要 Share 给其他人或者组织的.SharePoint 虽然支持在某个 Site Collection 中互通信息,但是跨 Site Collection 的 ...
- 2.sublime设置本地远程代码同步
1.打开编辑器输入框(Ctrl+Shift+P),并执行 2.回车后输入sftp 3.回车个后,右键项目 4.修改配置信息,保存
- SpringCloud的服务注册中心(四)- 高可用服务注册中心的搭建
一.双 服务注册注册中心 1.服务注册中心的服务端 - EurekaServer 1.1.EurekaServer1 String.application.name=eureka-server ser ...