●BZOJ 3676 [Apio2014]回文串
题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=3676
题解:
后缀数组,Manacher,二分
首先有一个结论:一个串的本质不同的回文串的个数不超过 N(串的长度)个。
这个结论可以由 Manacher算法的过程得出。
因为每次在暴力拓展时,
如果当前回文串的右端点大于了记录的MAXR,那么就可能产生了一个之前没有出现过的回文串。
而如果右端点没有超过 MAXR,既不会暴力拓展(即之前已经出现过了),也就更不会产生新的回文串。
(不太懂?再看看这里的东西啦。)
而整个算法中暴力拓展只会拓展N次,所以最多只会产生 N。
既然得到了所有本质不同的回文串,且个数不超过 N个。(只能保证找到了所有的,但可能会有重复的记录)
就下来就只需要在后缀数组中找到该回文串出现了多少次就好了。
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 305000
#define filein(x) freopen(#x".in","r",stdin);
#define fileout(x) freopen(#x".out","w",stdout);
using namespace std;
char S[MAXN];
int sa[MAXN],rak[MAXN],hei[MAXN],stm[MAXN][20];
int start[MAXN],len[MAXN],log2[MAXN],cnt;
void build(int N,int M){
static int cc[MAXN],ta[MAXN],tb[MAXN],*x,*y,h,p;
x=ta; y=tb; h=0;
for(int i=0;i<M;i++) cc[i]=0;
for(int i=0;i<N;i++) cc[x[i]=S[i]]++;
for(int i=1;i<M;i++) cc[i]+=cc[i-1];
for(int i=N-1;i>=0;i--) sa[--cc[x[i]]]=i;
for(int k=1;p=0,k<N;k<<=1){
for(int i=N-k;i<N;i++) y[p++]=i;
for(int i=0;i<N;i++) if(sa[i]>=k) y[p++]=sa[i]-k;
for(int i=0;i<M;i++) cc[i]=0;
for(int i=0;i<N;i++) cc[x[y[i]]]++;
for(int i=1;i<M;i++) cc[i]+=cc[i-1];
for(int i=N-1;i>=0;i--) sa[--cc[x[y[i]]]]=y[i];
swap(x,y); y[N]=-1; x[sa[0]]=0; M=1;
for(int i=1;i<N;i++)
x[sa[i]]=y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k]?M-1:M++;
if(M>=N) break;
}
for(int i=0;i<N;i++) rak[sa[i]]=i;
for(int i=0,j;i<N;i++){
if(h) h--;
if(rak[i]){
j=sa[rak[i]-1];
while(S[i+h]==S[j+h]) h++;
}
stm[rak[i]][0]=hei[rak[i]]=h;
}
for(int k=1;k<=log2[N];k++)
for(int i=(1<<k)-1;i<N;i++)
stm[i][k]=min(stm[i-(1<<(k-1))][k-1],stm[i][k-1]);
}
int query(int l,int r){
static int k;
if(l>r) swap(l,r); l++;
k=log2[r-l+1];
return min(stm[r][k],stm[l+(1<<k)-1][k]);
}
void Manacher(int N){
static char T[2*MAXN];
static int p[MAXN*2],maxr,pos,lT;
T[0]='&'; T[1]='#'; lT=2;
for(int i=0;i<N;i++) T[lT++]=S[i],T[lT++]='#';
maxr=pos=0;
for(int i=1;i<lT;i++){
if(i<maxr) p[i]=min(p[2*pos-i],maxr-i);
else p[i]=1;
while(T[i+p[i]]==T[i-p[i]]){
if(i+p[i]>maxr){
maxr=i+p[i]; pos=i;
if(T[i+p[i]-1]!='#')
cnt++,start[cnt]=(i-p[i]+1)/2-1,len[cnt]=p[i]; //记录回文串
}
p[i]++;
}
}
//for(int i=1;i<=cnt;i++) printf("%d %d\n",start[i],len[i]);
}
int find(int p,int lim,int x,int N){
int pos=p;
for(int k=log2[N],_p;k>=0;k--){
_p=pos+x*(1<<k);
if(_p<0||_p>=N) continue;
if(query(_p,p)<lim) continue;
pos=_p;
}
return pos;
}
void getans(int N){
long long ans=0; hei[N]=0;
for(int i=1,rk,l,r;i<=cnt;i++){
rk=rak[start[i]];
l=find(rk,len[i],-1,N);
r=find(rk,len[i],1,N);
ans=max(ans,1ll*len[i]*(r-l+1));
}
printf("%lld",ans);
}
int main()
{
log2[1]=0;
for(register int i=2;i<=300000;i++)
log2[i]=log2[i>>1]+1;
scanf("%s",S);
int N=strlen(S);
build(N,300);
Manacher(N);
getans(N);
return 0;
}
●BZOJ 3676 [Apio2014]回文串的更多相关文章
- BZOJ 3676: [Apio2014]回文串
3676: [Apio2014]回文串 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 2013 Solved: 863[Submit][Status ...
- bzoj 3676: [Apio2014]回文串 回文自动机
3676: [Apio2014]回文串 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 844 Solved: 331[Submit][Status] ...
- 字符串(马拉车算法,后缀数组,稀疏表):BZOJ 3676 [Apio2014]回文串
Description 考虑一个只包含小写拉丁字母的字符串s.我们定义s的一个子串t的“出 现值”为t在s中的出现次数乘以t的长度.请你求出s的所有回文子串中的最 大出现值. Input 输入只有一行 ...
- BZOJ 3676 [Apio2014]回文串(回文树)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3676 [题目大意] 考虑一个只包含小写拉丁字母的字符串s. 我们定义s的一个子串t的& ...
- bzoj 3676: [Apio2014]回文串【回文自动机】
回文自动机板子 或者是SAM+manacher+倍增,就是manacher求本质不同回文串(让f++的串),然后在SAM倍增查询对应点出现次数 #include<iostream> #in ...
- BZOJ 3676 [Apio2014]回文串 (后缀自动机+manacher/回文自动机)
题目大意: 给你一个字符串,求其中回文子串的长度*出现次数的最大值 明明是PAM裸题我干嘛要用SAM做 回文子串有一个神奇的性质,一个字符串本质不同的回文子串个数是$O(n)$级别的 用$manach ...
- bzoj 3676 [Apio2014]回文串(Manacher+SAM)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3676 [题意] 给定一个字符串,定义一个串的权值为长度*出现次数,求最大权的回文子串. ...
- BZOJ.3676.[APIO2014]回文串(回文树)
BZOJ 洛谷 很久之前写(抄)过一个Hash+Manacher的做法,当时十分懵逼=-= 然而是道回文树模板题. 回文树教程可以看这里(真的挺妙的). 顺便再放上MilkyWay的笔记~ //351 ...
- bzoj 3676: [Apio2014]回文串【后缀自动机+manacher】
用manacher找出本质不同的回文子串放在SAM上跑 #include<iostream> #include<cstdio> #include<cstring> ...
随机推荐
- 那些在django开发中遇到的坑
1. 关于csrf错误 CSRF(Cross-site request forgery)跨站请求伪造,也被称为“one click attack”或者session riding,通常缩写为CSRF或 ...
- C程序第一次作业
1-1 计算两数的和与差 1 设计思路 (1)主要描述题目算法 第一步:利用指针psum接收sum的地址,指针pdiff接收diff的地址,因此 * psum为sum, * pdiff为diff. 第 ...
- mysql基础篇 - SELECT 语句详解
基础篇 - SELECT 语句详解 SELECT语句详解 一.实验简介 SQL 中最常用的 SELECT 语句,用来在表中选取数据,本节实验中将通过一系列的动手操作详细学习 SELEC ...
- android批量打包
http://blog.csdn.net/johnny901114/article/details/48714849
- 22.C++- 继承与组合,protected访问级别
在C++里,通过继承和组合实现了代码复用,使得开发效率提高,并且能够通过代码看到事物的关系 组合比继承简单,所以在写代码时先考虑能否组合,再来考虑继承. 组合的特点 将其它类的对象作为当前类的成员使用 ...
- raid5 / raid5e / raid5ee的性能对比及其数据恢复原理
RAID 5 是一种存储性能.数据安全和存储成本兼顾的存储解决方案. RAID 5可以理解为是RAID 0和RAID 1的折中方案.RAID 5可以为系统提供数据安全保障,但保障程度要比Mirror低 ...
- EasyUI导航栏。
html: <div data-options="region:'west',split:true" title="导航栏菜单" style=" ...
- DOM中的事件对象(event)
在触发DOM上的某个事件时,会产生一个事件对象event,这个对象中包含着所有与事件相关的信息. 包括导致事件的元素.事件的类型以及其他与特定事件相关的信息. 例如:鼠标操作导致的事件对象中,会包含鼠 ...
- SQL SERVER 字符串按数字排序
需求是这样的: 数据库表里面有一个字段类型是nvachar,存的值是数字和字符混合的,要实现先按数字排序,再按字母倒序. 思路: 考虑这个字段的值是否是有规律可循的,把要按数字排序的部分转换为数字,再 ...
- C语言学习(一)
C语言易学难精,如果在平时的编程中,加入一些小技巧,可以提供程序运行的效率,何乐而不为呢? 本小白初学C语言准备记录自己的学C之路,经常贴一些自己觉得优化的小程序代码,希望大神们不吝 赐教. 宏定义下 ...