[BZOJ1977]严格次小生成树
【问题描述】
小C最近学了很多最小生成树的算法,Prim算法、Kurskal算法、消圈算法等等。
正当小C洋洋得意之时,小P又来泼小C冷水了。小P说,让小C求出一个无向图的次小生成树,而且这个次小生成树还得是严格次小的,也就是说:如果最小生成树选择的边集是EM,严格次小生成树选择的边集是ES,那么需要满足:(value(e)表示边e的权值)
这下小C蒙了,他找到了你,希望你帮他解决这个问题。
【输入格式】
第一行包含两个整数N 和M,表示无向图的点数与边数。 接下来 M行,每行 3个数x y z 表示,点x和点y之间有一条边,边的权值为z。
【输出格式】
包含一行,仅一个数,表示严格次小生成树的边权和。(数据保证必定存在严格次小生成树)
【输入样例】
5 6
1 2 1
1 3 2
2 4 3
3 5 4
3 4 3
4 5 6
【输出样例】
11
【数据范围】
数据中无向图无自环;
50% 的数据N≤2 000 M≤3 000;
80% 的数据N≤50 000 M≤100 000;
100% 的数据N≤100 000 M≤300 000 ,边权值非负且不超过 10^9 。
题解:
要求求严格次小生成树,首先kruskal就无法使用,prim复杂度太高
于是我们用LCA
构造出最小生成树,可知次小生成树肯定是加入某边再删去一边
假设加入(i,j)则有删去生成树上i~j路径最大的边,用倍增维护
但是严格次小没有解决
可以在用倍增维护最大值时,再维护次小值,那么当最大值等于加入边权值时则删去次大边
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long lol;
struct Messi
{
lol u,v;
lol dis;
}edge1[];
struct Node
{
lol next,to;
lol dis;
}edge[];
lol num,head[],set[],depth[],Max[][],Max2[][],fa[][],n,m,ans1,ans=2e9;
bool vis[],b[];
bool cmp(Messi a,Messi b)
{
return a.dis<b.dis;
}
void add(lol u,lol v,lol dis)
{
num++;
edge[num].next=head[u];
head[u]=num;
edge[num].to=v;
edge[num].dis=dis;
}
lol find(lol x)
{
if (set[x]!=x) set[x]=find(set[x]);
return set[x];
}
void dfs(lol x,lol dep)
{int i;
vis[x]=;
depth[x]=dep;
for (i=;i<=;i++)
if (dep>(<<i))
{
Max[x][i]=max(Max[x][i-],Max[fa[x][i-]][i-]);
if (Max[x][i-]!=Max[fa[x][i-]][i-]) Max2[x][i]=Max[x][i-]+Max[fa[x][i-]][i-]-Max[x][i];
Max2[x][i]=max(Max2[x][i],max(Max2[x][i-],Max2[fa[x][i-]][i-]));
fa[x][i]=fa[fa[x][i-]][i-];
}
for (i=head[x];i;i=edge[i].next)
{
int v=edge[i].to;
if (vis[v]==)
{
fa[v][]=x;
Max[v][]=edge[i].dis;
dfs(v,dep+);
}
}
}
lol ask(lol x,lol y,lol d)
{int i;
lol s1=,s2=;
if (depth[x]<depth[y]) swap(x,y);
for (i=;i>=;i--)
if ((<<i)<=depth[x]-depth[y])
{
if (s1!=Max[x][i]) s2=max(s2,min(s1,Max[x][i]));
s2=max(s2,Max2[x][i]);
s1=max(s1,Max[x][i]);
x=fa[x][i];
}
if (x==y)
{
if (s1==d&&s2) return d-s2;
else if (s2==) return 2e9;
else if (s1!=d)return d-s1;
}
for (i=;i>=;i--)
{
if ((<<i)<depth[x]&&fa[x][i]!=fa[y][i])
{
if (s1!=Max[x][i]) s2=max(s2,min(s1,Max[x][i]));
s2=max(s2,Max2[x][i]);
s1=max(s1,Max[x][i]);
if (s1!=Max[y][i]) s2=max(s2,min(s1,Max[y][i]));
s2=max(s2,Max2[y][i]);
s1=max(s1,Max[y][i]);
x=fa[x][i];y=fa[y][i];
}
}
if (s1!=Max[x][]) s2=max(s2,min(s1,Max[x][]));
s2=max(s2,Max2[x][]);
s1=max(s1,Max[x][]);
if (s1!=Max[y][]) s2=max(s2,min(s1,Max[y][]));
s2=max(s2,Max2[y][]);
s1=max(s1,Max[y][]);
x=fa[x][];y=fa[y][];
if (s1==d&&s2) return d-s2;
else if (s2==) return 2e9;
else if (s1!=d)return d-s1;
}
int main()
{int i,j,q,opt,x,y;
//freopen("scrip.in","r",stdin);
//freopen("scrip.out","w",stdout);
cin>>n>>m;
for (i=;i<=m;i++)
{
scanf("%d%d%d",&edge1[i].u,&edge1[i].v,&edge1[i].dis);
}
sort(edge1+,edge1+m+,cmp);
for (i=;i<=n;i++)
set[i]=i;
i=;j=;
while (i<=n-&&j<=m)
{
int p=find(edge1[j].u),q=find(edge1[j].v);
if (p!=q)
{
set[p]=q;
i++;
b[j]=;
ans1+=edge1[j].dis;
add(edge1[j].u,edge1[j].v,edge1[j].dis);
add(edge1[j].v,edge1[j].u,edge1[j].dis);
}
j++;
}
if (i<=n-)
{
cout<<"No MST!";
return ;
}
dfs(,);
for (j=;j<=m;j++)
{
if (b[j]==)
{
ans=min(ans,ask(edge1[j].u,edge1[j].v,edge1[j].dis));
}
}
if (ans==2e9)
{
cout<<"No SST!";
return ;
}
cout<<ans+ans1;
}
[BZOJ1977]严格次小生成树的更多相关文章
- 【BZOJ1977】[BeiJing2010组队]次小生成树 Tree 最小生成树+倍增
[BZOJ1977][BeiJing2010组队]次小生成树 Tree Description 小 C 最近学了很多最小生成树的算法,Prim 算法.Kurskal 算法.消圈算法等等. 正当小 C ...
- 【次小生成树】bzoj1977 [BeiJing2010组队]次小生成树 Tree
Description 小 C 最近学了很多最小生成树的算法,Prim 算法.Kurskal 算法.消圈算法等等. 正当小 C 洋洋得意之时,小 P 又来泼小 C 冷水了.小 P 说,让小 C 求出一 ...
- 严格次小生成树(Bzoj1977:[Beijing2010组队]次小生成树)
非严格次小生成树 很简单,先做最小生成树 然后枚举没加入的边加入,替换掉这个环内最大的边 最后取\(min\) 严格次小生成树 还是一样的 可以考虑维护一个严格次大值 最大值和枚举的边相同就替换次大值 ...
- bzoj1977次小生成树(重要)
#include<cstdio> #include<iostream> #include<cstring> #include<queue> #inclu ...
- [BZOJ1977][BeiJing2010组队]次小生成树
题解: 首先要证明一个东西 没有重边的图上 次小生成树由任何一颗最小生成树替换一条边 但是我不会证啊啊啊啊啊啊啊 然后就很简单了 枚举每一条边看看能不能变 但有一个特殊情况就是,他和环上的最大值相等, ...
- 2018.09.15 bzoj1977:次小生成树 Tree(次小生成树+树剖)
传送门 一道比较综合的好题. 由于是求严格的次小生成树. 我们需要维护一条路径上的最小值和次小值. 其中最小值和次小值不能相同. 由于不喜欢倍增我选择了用树链剖分维护. 代码: #include< ...
- bzoj1977 次小生成树
Description 小 C 最近学了很多最小生成树的算法,Prim 算法.Kurskal 算法.消圈算法等等. 正当小 C 洋洋得意之时,小 P 又来泼小 C 冷水了.小 P 说,让小 C 求出一 ...
- 【bzoj1977】[BeiJing2010组队]次小生成树 Tree 最小生成树+权值线段树合并
题目描述 求一张图的严格次小生成树的边权和,保证存在. 输入 第一行包含两个整数N 和M,表示无向图的点数与边数. 接下来 M行,每行 3个数x y z 表示,点 x 和点y之间有一条边,边的权值为z ...
- [bzoj1977][BeiJing2010组队]次小生成树 Tree——树上倍增+lca
Brief Description 求一个无向图的严格次小生成树. Algorithm Design 考察最小生成树的生成过程.对于一个非树边而言,如果我们使用这一条非树边去替换原MST的路径上的最大 ...
随机推荐
- 实验三《Java面向对象程序设计》实验报告
20162308 实验三<Java面向对象程序设计>实验报告 实验内容 XP基础 XP核心实践 IDEA工具学习 密码学算法基础 实验步骤 (一)Refactor/Reformat使用 p ...
- 团队作业4——第一次项目冲刺(Alpha版本)
第一天http://www.cnblogs.com/ThinkAlone/p/7861070.html 第二天http://www.cnblogs.com/ThinkAlone/p/7861191.h ...
- JAVA中if多分支和switch的优劣性。
Switch多分支语句switch语句是多分支选择语句.常用来根据表达式的值选择要执行的语句.例如,在某程序中,要求将输入的或是获取的用0-6代表的星期,转换为用中文表示的星期.该需求通过伪代码描述的 ...
- 使用caffe训练mnist数据集 - caffe教程实战(一)
个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231 ...
- Web Api HttpWebRequest 请求 Api 及 异常处理
HttpWebRequest request = WebRequest.CreateHttp(url); request.Method = "post"; request.Head ...
- Angular 学习笔记 ( CDK - Layout )
简单说就是 js 的 media query. 1. BreakpointObserver const layoutChanges = this.breakpointObserver.observe ...
- io流的关闭顺序
1.一般先打开的后关闭,后打开的先关闭 2.可以只关闭处理流,因为io流使用了装饰模式,所以关闭处理流时,会调用节点流的close()方法.
- JS中全等和相等操作符的区别和比较规则
一.两者的区别 相等:先强制转换变量类型,再比较 全等:不转换类型,一旦类型不同,就是不全等. 二.相等和不相等的比较规则 1.操作符中有布尔值时: 比较前先将之转换为数值 false => 0 ...
- Java:Java 中会存在内存泄漏吗
理论上Java因为有垃圾回收机制(GC)不会存在内存泄露问题(这也是Java被广泛使用于服务器端编程的一个重要原因):然而在实际开发中,可能会存在无用但可达的对象,这些对象不能被GC回收,因此也会导致 ...
- Java-NIO(一):简介
Java NIO简介: Java New IO Non Blocking IO,从java1.4版本就开始引入了新的IO API,可以替代标准的Java IO API.NIO与原来的IO有同样的作用和 ...